Im Physikunterricht wurde lange Zeit die Bedeutung quantitativer Zusammenhänge für das Physiklernen überbewertet, qualitative Zusammenhänge spielten dagegen eine eher untergeordnete Rolle. Dies führte dazu, dass das Wissen der Schüler zumeist oberflächlich blieb und nicht auf neue Situationen angewendet werden konnte. TIMSS und Pisa offenbarten diese Schwierigkeiten. In den Abschlussberichten wurde kritisiert, dass die Schüler kaum in der Lage seien, Lernstoff zu transferieren oder problemlösend zu denken. Um physikalische Abläufe deuten und entsprechende Probleme lösen zu können, ist qualitativ-konzeptuelles Wissen nötig. Dieses kann, wie Forschungsergebnisse belegen, am besten durch die konstruktivistisch motivierte Gestaltung von Lernsituationen sowie durch die Integration externer Repräsentationen von Versuchsaussagen in den Schulunterricht erreicht werden. Eine konkrete Umsetzung dieser Bedingungen stellt der Einsatz rechnergestützter Experimente dar, der heutzutage ohne allzu großen technischen Aufwand realisiert werden kann. Diese Experimente erleichtern es dem Lernenden, durch den direkten Umgang mit realen Abläufen, physikalische Konzepte zu erschließen und somit qualitative Zusammenhänge zu verstehen. Während man lange Zeit von einer grundsätzlichen Lernwirksamkeit animierter Lernumgebungen ausging, zeigen dagegen neuere Untersuchungen eher Gegenteiliges auf. Schüler müssen offensichtlich erst lernen, wie mit multicodierten Repräsentationen zu arbeiten ist. Die vorliegende Arbeit will einen Beitrag dazu leisten, herauszufinden, wie lernwirksam sogenannte dynamisch-ikonische Repräsentationen (DIR) sind, die physikalische Größen vor dem Hintergrund konkreter Versuchsabläufe visualisieren. Dazu bearbeiteten im Rahmen einer DFG-Studie insgesamt 110 Schüler jeweils 16 Projekte, in denen mechanische Konzepte (Ort, Geschwindigkeit, Beschleunigung und Kraft) aufgegriffen wurden. Es zeigte sich, dass die Probanden mit den eingesetzten DIR nicht erfolgreicher lernen konnten als vergleichbare Schüler, die die gleichen Lerninhalte ohne die Unterstützung der DIR erarbeiteten. Im Gegenteil: Schüler mit einem geringen visuellen Vorstellungsvermögen schnitten aufgrund der Darbietung einer zusätzlichen Codierung schlechter ab als ihre Mitschüler. Andererseits belegen Untersuchungen von Blaschke, dass solche Repräsentationen in der Erarbeitungsphase einer neu entwickelten Unterrichtskonzeption auch und gerade von schwächeren Schülern konstruktiv zum Wissenserwerb genutzt werden konnten. Es scheint also, dass die Lerner zunächst Hilfe beim Umgang mit neuartigen Repräsentationsformen benötigen, bevor sie diese für den weiteren Aufbau adäquater physikalischer Modelle nutzen können. Eine experimentelle Untersuchung mit Schülern der 10. Jahrgangsstufe bestätigte diese Vermutung. Hier lernten 24 Probanden in zwei Gruppen die mechanischen Konzepte zu Ort, Geschwindigkeit und Beschleunigung kennen, bevor sie im Unterricht behandelt wurden. Während die Teilnehmer der ersten Gruppe nur die Simulationen von Bewegungsabläufen und die zugehörigen Liniendiagramme sahen, wurden für die zweite Gruppe unterstützend DIR eingesetzt, die den Zusammenhang von Bewegungsablauf und Liniendiagramm veranschaulichen sollten. In beiden Gruppen war es den Probanden möglich, Fragen zu stellen und Hilfe von einem Tutor zu erhalten. Die Ergebnisse zeigten auf, dass es den Schülern durch diese Maßnahme ermöglicht wurde, die DIR erfolgreich zum Wissenserwerb einzusetzen und signifikant besser abzuschneiden als die Teilnehmer in der Kontrollgruppe. In einer weiteren Untersuchung wurde abschließend der Frage nachgegangen, ob DIR unter Anleitung eines Tutors eventuell bereits in der Unterstufe sinnvoll eingesetzt werden können. Ausgangspunkt dieser Überlegung war die Tatsache, dass mit der Einführung des neuen bayerischen G8-Lehrplans wesentliche Inhalte, die Bestandteil der vorherigen Untersuchungen waren, aus dem Physikunterricht der 11. Jgst. in die 7. Jahrgangsstufe verlegt wurden. So bot es sich an, mit den Inhalten auch die DIR in der Unterstufe einzusetzen. Die Untersuchungen einer quasiexperimentellen Feldstudie in zwei siebten Klassen belegten, dass die betrachteten Repräsentationen beim Aufbau entsprechender Konzepte keinesfalls hinderlich, sondern sogar förderlich sein dürften. Denn die Schülergruppe, die mit Hilfe der DIR lernte, schnitt im direkten hypothesenprüfenden Vergleich mit der Kontrollklasse deutlich besser ab. Ein Kurztest, der die Nachhaltigkeit des Gelernten nach etwa einem Jahr überprüfen sollte, zeigte zudem auf, dass die Schüler der DIR-Gruppe die Konzepte, die unter Zuhilfenahme der DIR erarbeitet wurden, im Vergleich zu Schülern der Kontrollklasse und zu Schülern aus 11. Klassen insgesamt überraschend gut verstanden und behalten hatten. / For a long time the significance of quantitative interrelations for the acquisition of physics has been overestimated in physics education while qualitative interrelations have been considered of less importance. This has resulted in the students’ knowledge most often remaining superficial and not suited to be adapted to new situations. TIMSS and Pisa have revealed these difficulties, criticizing the conventional physics education for demanding too little transfer achievements and not preparing students to solve physical problems on their own by thinking constructively. To be able to solve physical problems and interpret physical processes, qualitative-conceptual knowledge is vital. According to results of the latest research this can be achieved most efficiently by creating constructivist learning situations as well as integrating external representations of conclusions from experiments. A concrete way to reach these envisaged aims is the application of PC-assisted experiments, which can be put in practise without an exceeding technical effort. These experiments enable the students - by being directly confronted with a realistic process - to get insight into physical concepts and thus to understand qualitative interrelations. For a long time a basic learning efficiency of animated learning environments was assumed, more recent research, however, has rather pointed in the opposite direction. Obviously students must first learn how to work with multi-coded representations. This paper is intended to contribute to the exploration of the efficiency of the so-called dynamic-iconic representations (DIR), which visualize physical values against the background of concrete test procedures. For this purpose 110 students have covered 16 projects each within a DFG study, in which mechanical concepts (place, velocity, acceleration and force) are dealt with and developed further. As it turned out, students working with the dynamic-iconic representations did not learn more efficiently than those working without the assistance of the dynamic-iconic representations. On the contrary: students with a less distinct visual-spatial ability did worse than their fellow-students, obviously due to the presentation of yet another encoding. On the other hand research by Blaschke has proven that such representations can be used constructively to gain knowledge especially by the inefficient students during the acquisition stages of a (newly-developed) teaching conception. Consequently, it seems that students must first receive some sort of assistance with handling novel forms of representation before being able to use them for getting to know about the further construction of physical models. An experimental study with participants from tenth-grade high school classes has confirmed this assumption. Another study dealt with the question as to whether dynamic-iconic representations can already be applied expediently in the lower grade. It was performed because significant contents of the physics year 11 curriculum had been moved to year 7 with the introduction of the new Bavarian G8 (eight-year high school) curriculum. Thus it seemed advisable to apply the dynamic-iconic representations along with the contents in the lower grade. The research done in a quasi experimental field study has shown that the representations in question are by no means obstructive, but in parts conducive to the students’ ability to develop corresponding conceptions. This can be seen from the fact that the group of students learning with the assistance of dynamic-iconic representations did indeed considerably better than the ‘control group’. With its results this paper is supposed to contribute to a better understanding of the application of multimedia learning environments. The medium alone cannot induce meaningful learning processes – these processes must be well-structured and start as soon as possible, so that they can teach the students to deal with the different encodings sensibly. I am convinced that this is the only way the various possibilities our current IT age offers us with its multimedia worlds or multi-coded learning environments can be used efficiently.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2516 |
Date | January 2007 |
Creators | Galmbacher, Matthias |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0037 seconds