Chiao Ying Ann. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 127-140). / Abstracts in English and Chinese. / Thesis Committee --- p.I / Statement --- p.II / Abstract --- p.III / 摘要 --- p.V / Acknowledgements --- p.VII / Abbreviations --- p.IX / Abbreviation of chemicals --- p.XI / Table of Contents --- p.XII / List of figures and tables --- p.XVIII / Chapter Chapter 1. --- Literature review / Chapter 1.1 --- Significances of manipulation of nitrogen sink-source relationship --- p.1 / Chapter 1.2 --- Nitrogen sink-source relationship in plants --- p.2 / Chapter 1.3 --- Aspartate family amino acid metabolism --- p.5 / Chapter 1.3.1 --- Asparagine metabolism --- p.9 / Chapter 1.3.1.1 --- "Asparagine synthetase (AS, EC 6.3.5.4)" --- p.9 / Chapter 1.3.1.2 --- "Asparaginase (ANS, EC 3.5.1.1)" --- p.10 / Chapter 1.3.2 --- Metabolism of aspartate-derived essential amino acids --- p.10 / Chapter 1.3.2.1 --- "Aspartate kinase (AK, EC 2.7.2.4)" --- p.10 / Chapter 1.3.2.2 --- "Homoserine dehydrogenase (HSD, EC 1.1.1.3)" --- p.12 / Chapter 1.3.2.3 --- "Dihydrodipicolinate synthase (DHPS, EC 4.2.1.52)" --- p.13 / Chapter 1.3.2.4 --- "Lysine a-ketoglutarate reductase (LKR, EC 1.5.1.7)" --- p.14 / Chapter 1.3.2.5 --- "Threonine synthase (TS, EC 4.2.3.1)" --- p.15 / Chapter 1.3.2.6 --- Cystathionine γ-synthase (CGS,EC 2.5.1.48) --- p.16 / Chapter 1.3.2.7 --- Threonine deaminase (TD,EC 4.3.1.19) --- p.17 / Chapter 1.4 --- Previous attempts to manipulate seed protein quantity and quality --- p.18 / Chapter 1.4.1 --- Enhancement of amino acids transported from source to sink --- p.18 / Chapter 1.4.2 --- Redirection of metabolic pathways to increase target amino acids --- p.19 / Chapter 1.4.2.1 --- Production of aspartate by Aspartate Aminotransferase (AAT) --- p.24 / Chapter 1.4.2.2 --- Deregulation of AK to increase the common substrate for all essential aspartate family amino acids --- p.25 / Chapter 1.4.2.3 --- Inhibition of TS and enhancement of CGS to increase Met biosynthesis --- p.25 / Chapter 1.4.2.3.1 --- Inhibition of TS --- p.26 / Chapter 1.4.2.3.2 --- Enhancement of CGS --- p.26 / Chapter 1.4.2.4 --- Deregulation of DHPS and reduction of lysine catabolism to increase lysine content --- p.27 / Chapter 1.4.2.4.1 --- Deregulation of DHPS --- p.28 / Chapter 1.4.2.4.2 --- Reduction of Lys catabolism --- p.29 / Chapter 1.4.2.3.3 --- Deregulation of DHPS and reduction of LKR --- p.29 / Chapter 1.4.3 --- Expression of seed storage proteins to entrap the free amino acids --- p.30 / Chapter 1.5 --- Expression of multiple transgenes in plants --- p.34 / Chapter 1.5.1 --- Significance of multiple genes manipulation in seed quality improvement --- p.34 / Chapter 1.5.2 --- Difficulties in introduction of multiple genes into plant genomes --- p.34 / Chapter 1.5.3 --- Recent advances in introduction of multiple genes into plant genome --- p.35 / Chapter 1.6 --- Global nitrogen regulators in plants --- p.36 / Chapter 1.6.1 --- Global regulation of nitrogen metabolism --- p.36 / Chapter 1.6.2 --- General amino acid control by GCN system --- p.38 / Chapter 1.6.3 --- General amino acid control in plants --- p.39 / Chapter 1.6.4 --- GCN system in plants --- p.41 / Chapter 1.7 --- Hypothesis and specific objectives of this study --- p.42 / Chapter Chapter 2 --- Materials and methods --- p.46 / Chapter 2.1 --- Materials --- p.46 / Chapter 2.1.1 --- "Vectors, bacterial strains and plants" --- p.46 / Chapter 2.1.2 --- Chemicals and reagents used --- p.49 / Chapter 2.1.3 --- "Buffer, solution, gel and medium" --- p.49 / Chapter 2.1.4 --- Commercial kits used --- p.49 / Chapter 2.1.5 --- Equipments and facilities used --- p.49 / Chapter 2.2 --- Methods --- p.50 / Chapter 2.2.1 --- Molecular techniques --- p.50 / Chapter 2.2.1.1 --- DNA gel electrophoresis --- p.59 / Chapter 2.2.1.2 --- PCR technique --- p.50 / Chapter 2.2.1.3 --- Restriction digestion --- p.50 / Chapter 2.2.1.4 --- Ligation (for sticky-end ligation) --- p.51 / Chapter 2.2.1.5 --- DNA purification --- p.51 / Chapter 2.2.1.6 --- DNA sequencing --- p.51 / Chapter 2.2.1.7 --- Transformation of competent E. coli cells --- p.52 / Chapter 2.2.1.8 --- Preparation of plasmid from bacterial cells --- p.53 / Chapter 2.2.1.9 --- Transformation of competent Agrobacterium tumefaciens cells --- p.53 / Chapter 2.2.1.10 --- DNA extraction from plant tissue (Small-scale) --- p.54 / Chapter 2.2.1.11 --- RNA extraction from plant tissue --- p.55 / Chapter 2.2.2 --- Growth conditions of A. thaliana --- p.55 / Chapter 2.2.2.1 --- Surface sterilization of A. thaliana seeds --- p.55 / Chapter 2.2.2.2 --- Growing A. thaliana --- p.55 / Chapter 2.2.3 --- Characterization of transgenic A. thaliana with altered sink-source relationship --- p.57 / Chapter 2.2.3.1. --- Determination of amino acid contents in seeds --- p.57 / Chapter 2.2.3.2. --- Expression study of developing siliques of transgenic lines --- p.58 / Chapter 2.2.3.2.1 --- Tagging siliques of different developmental stages --- p.58 / Chapter 2.2.3.2.2 --- Extraction of silique RNA --- p.58 / Chapter 2.2.3.2.3 --- cDNA synthesis --- p.58 / Chapter 2.2.3.2.4 --- Real-time PCR --- p.59 / Chapter 2.2.4 --- Characterization of transgenic A. thaliana overexpressing GCN2 --- p.60 / Chapter 2.2.4.1 --- Gene expression study of vegetative tissues by real-time PCR --- p.60 / Chapter 2.2.4.2 --- Gene expression study of developing siliques by real-time PCR --- p.61 / Chapter 2.2.5 --- Making transgenic A. thaliana --- p.61 / Chapter 2.2.5.1 --- Cloning of multigene construct --- p.61 / Chapter 2.2.5.1.1 --- Subcloning of target genes into donor vectors --- p.61 / Chapter 2.2.5.1.1.1 --- Cloning of LRP into donor vector VS --- p.61 / Chapter 2.2.5.1.1.2 --- Cloning of dapA into donor vector SV --- p.64 / Chapter 2.2.5.1.1.3 --- Cloning of ansB into donor vector VS --- p.67 / Chapter 2.2.5.1.1.4 --- Cloning of antisense LKR fragment into donor vector SV --- p.70 / Chapter 2.2.5.1.2 --- Preparation of phosphorylated linkers --- p.73 / Chapter 2.2.5.1.3 --- Introduction of target genes to acceptor vector --- p.73 / Chapter 2.2.5.2 --- Agrobacterium-mediated transformation of A. thaliana via Vacuum infiltration --- p.78 / Chapter 2.2.5.3 --- Screening of transformants --- p.79 / Chapter Chapter 3. --- Results --- p.80 / Chapter 3.1 --- Characterization of transgenic lines with altered sink-source relationship --- p.80 / Chapter 3.1.1 --- Amino acid analysis of mature seeds of transgenic lines --- p.80 / Chapter 3.1.1.1 --- Aspartate family amino acids levels remain steady in seeds of transgenic plants --- p.83 / Chapter 3.1.1.2 --- Increase in seed Met content in Met-rich protein expressing transgenic plants --- p.85 / Chapter 3.1.1.3 --- Increase in seed Lys content in phas-dapA/phas-LRP transgenic plants --- p.87 / Chapter 3.1.2 --- Gene expression study of transgenic line --- p.89 / Chapter 3.1.2.1 --- Down-regulation of akthr1 and akthr2 in transgenic plants with altered N sink-source relationship --- p.89 / Chapter 3.1.2.2 --- Down regulation of GCN2 in transgenic plants with altered N sink-source relationship --- p.90 / Chapter 3.1.2.4 --- Expression study of other genes in aspartate family pathway --- p.90 / Chapter 3.2 --- Characterization of GCN2 overexpressing line --- p.93 / Chapter 3.2.1 --- Gene expression study of seedlings of GCN2 overexpressing plants --- p.93 / Chapter 3.2.1.1 --- Increased GCN2 expression by azaserine treatment --- p.93 / Chapter 3.2.1.2 --- Increased akthrl and akthr2 expression in GCN2 overexpressing plants --- p.96 / Chapter 3.2.1.3 --- Expression study of other genes in aspartate family pathway --- p.96 / Chapter 3.2.2 --- Gene expression study of GCN2 overexpressing plants during seed development --- p.98 / Chapter 3.3 --- Construction of transgenic plants by multigene assembly system --- p.100 / Chapter 3.3.1 --- Successful construction of recombinant plasmid carrying four target genes --- p.100 / Chapter 3.3.2 --- Transformation of A. thaliana with multigene vector --- p.103 / Chapter Chapter 4 --- Discussion --- p.104 / Chapter 4.1 --- Characterization of transgenic plants with altered sink-source relationship of aspartate family amino acid metabolism --- p.104 / Chapter 4.1.1 --- Total content of aspartate family amino acids remains steady in transgenic lines --- p.105 / Chapter 4.1.2 --- Methionine content increases in phas-PN2S and phas-MetL transgenic plants --- p.106 / Chapter 4.1.3 --- Relative lysine content increases in phas-dapA/phas-LRP transgenic plants --- p.107 / Chapter 4.1.4 --- Coordinated regulation of gene expressions of akthrl and akthr2 with GCN2 expression in transgenic plants with altered sink-source relationship --- p.109 / Chapter 4.2 --- GCN system in plants --- p.110 / Chapter 4.2.1 --- Transcriptional regulation of GCN2 in A. thaliana --- p.110 / Chapter 4.2.2 --- Regulation of amino acid biosynthesis by GCN system --- p.111 / Chapter 4.2.2.1 --- Regulation of akthrl and akthr2 by GCN2 --- p.111 / Chapter 4.2.2.2 --- GCN4 homolog in plants? --- p.112 / Chapter 4.2.2.3 --- Regulation of amino acid metabolism by GCN system --- p.113 / Chapter 4.3 --- Generation of transgenic plants with a combination of altered sink- source relationship --- p.114 / Chapter Chapter 5. --- Conclusion and Future Prospective --- p.116 / Appendix I: The major chemicals and reagents used in this research --- p.118 / "Appendix II: Major buffers, solutions and mediums used in this research" --- p.120 / Appendix III: Commercial kits used in this research --- p.125 / Appendix IV: Major equipment and facilities used in this research --- p.126 / References --- p.127
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325664 |
Date | January 2006 |
Contributors | Chiao, Ying Ann., Chinese University of Hong Kong Graduate School. Division of Molecular Biotechnology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xix, 140 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0029 seconds