Neste trabalho apresentamos um teorema que explicita condições necessárias e suficientes para que um polinômio f(X) 2 Q[X] seja solúvel por radicais reais, juntamente com algumas aplicações do mesmo. Além disso, mostramos que em Q[X] sempre e possível encontrar o grupo de Galois de qualquer polinômio f(X) 2 Q[X]. / In this text we present a Theorem which gives necessary and suficient conditions for a polynomial f(X) with rational coe cients to be soluble by real radicals, as well as some applications of this result. We also show that it is always possible to explicit the Galois group of any polynomial f(X) 2 Q[X].
Identifer | oai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/65427 |
Date | January 2012 |
Creators | Azevedo, Danielle Santos |
Contributors | Ripoll, Cydara Cavedon |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds