Return to search

Mosaïques, enveloppes convexes et modèle Booléen : quelques propriétés et rapprochements

Ce mémoire est consacré à trois modèles classiques de géométrie aléatoire : les mosaïques, les enveloppes convexes et le modèle booléen. Dans la première partie, on étudie les mosaïques poissonniennes d'hyperplans isotropes et plus particulièrement leur zéro-cellule qui est un polyèdre convexe aléatoire de l'espace euclidien. Deux cas particuliers de zéro-cellules sont la cellule typique de Poisson-Voronoi et la cellule de Crofton. On donne une formule explicite pour la loi du nombre de côtés d'une zéro-cellule en dimension deux. On s'intéresse au comportement asymptotique de cette loi et on fait le lien avec le problème de Sylvester des points en position convexe. On décrit ensuite la loi du rayon circonscrit ainsi que le comportement asymptotique du polyèdre à grand rayon inscrit au moyen de théorèmes limites. De cette manière et aussi par l'utilisation de la fréquence fondamentale, on apporte des précisions à l'énoncé de la conjecture de D. G. Kendall. La seconde partie a pour objet les enveloppes convexes de processus ponctuels de Poisson isotropes dans la boule-unité. On établit un résultat de type grandes déviations pour le nombre de sommets. On montre ensuite la convergence de la frontière de l'enveloppe après changement d'échelle et on en déduit des résultats de valeurs extrêmes, estimations de variance, théorèmes centraux limites et principes d'invariance pour certaines caractéristiques. Dans la troisième partie, on s'intéresse enfin aux modèles de recouvrement de type booléen de l'espace euclidien. Dans un premier travail, on applique une variante du modèle sans interpénétration des objets à la modélisation d'un phénomène de fissuration. On étudie ensuite la convergence de la composante connexe de l'origine d'un modèle booléen vers la cellule de Crofton en dimension deux. On s'intéresse enfin à la fonction de visibilité de cette composante connexe pour laquelle on obtient une estimée de la queue de distribution et des résultats de valeurs extrêmes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00448249
Date10 December 2009
CreatorsCalka, Pierre
PublisherUniversité René Descartes - Paris V
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0097 seconds