Return to search

Invariantes de germes de aplicações de C^2 em C^3 / Invariant of map germ from C^2 to C^3

Sejam f:(C^2,0) to (C^3,0) um germe de aplicação holomorfa de coposto 1 e f_t uma perturbação estável de f. Os pontos singulares de f_t são cross-caps, pontos duplos ou pontos triplos. O número de cross-caps e pontos triplos de f_t e o número de Milnor da curva de pontos duplos de f_t são invariantes do germe f. Neste trabalho estudamos fórmulas para obter estes invariantes e no caso dos germes quasi-homogêneos relacionamos estes invariantes com a A_e-codimensão de f. / Let f:(C^2,0) to (C^3,0) be a holomorphic map-germ with corank 1 and f_t a stable perturbation of f. The singular points of f_t are either cross-caps, double points or triple points. The number of cross-caps and the number of triple points of f_t and the Milnor number of the double points curve of f_t are invariants of the germs f. In this work we study formulas to get these invariants and in the case of quasi-homogeneous germs we relate these invariants with the A_e-codimension of f.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04072005-122826
Date03 March 2005
CreatorsVanda Maria Luchesi
ContributorsRoberta Godoi Wik Atique, Sueli Irene Rodrigues Costa, Maria Aparecida Soares Ruas
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds