Le cartilage a une capacité de régénération très limitée car il n'est pas vascularisé. Laréparation de ce tissu est un défi et les techniques chirurgicales actuelles sont insatisfaisantes à longterme. Le cartilage est donc un bon candidat pour l'ingénierie tissulaire. La transplantation dechondrocytes autologues (TCA) a été la première thérapie cellulaire développée en rhumatologie maiscette procédure implique une amplification des cellules qui aboutit à une perte du phénotypechondrocytaire (perte de l'expression du collagène de type II, protéine majoritaire du cartilage), auprofit d'un phénotype fibroblastique (caractérisé par l'expression du collagène de type I, retrouvé dansles tissus fibreux). La TCA conduit donc à une greffe de chondrocytes dédifférenciés produisant unfibrocartilage, dont les propriétés mécaniques sont inférieures à celles du cartilage articulaire.Aujourd'hui, les agences de santé au niveau international s'accordent pour dire que cette procédurenécessite d'être améliorée, par un meilleur contrôle du phénotype cellulaire et l'utilisation debiomatériaux pour mieux combler les lésions articulaires. Il s'agit donc de passer de la thérapiecellulaire à l'ingénierie tissulaire du cartilage.L'objectif de nos travaux a été d'évaluer la capacité d'un gel innovant de peptides autoassemblants,l'hydrogel IEIK13, à jouer le rôle de support pour des chondrocytes humains afin qu'ilsproduisent une matrice cartilage sous l'action de facteurs chondrogéniques. L'objectif visé a été lacréation d'un gel cartilage implantable par arthroscopie. Le défi a été de surmonter la dédifférenciationdes chondrocytes inhérente à leur amplification et incontournable pour augmenter le réservoircellulaire. L'amplification de chondrocytes humains a été réalisée en présence de FGF-2 et d'insuline(cocktail FI) puis leur redifférenciation a été induite en gel IEIK13 sous l'action de BMP-2, d'insuline etd'hormone T3 (cocktail BIT). C'est la combinaison sélective des deux cocktails qui permet la séquencedédifférenciation-redifférenciation. Le phénotype des chondrocytes et la nature de la matriceextracellulaire synthétisée en gel ont été évalués dans un premier temps in vitro, par des analyses dePCR en temps réel, Western-blots et d'immunohistochimie. Dans un second temps, nous avonstransplanté le gel cartilage dans des lésions articulaires de genou d'un modèle original de primate nonhumain(singe cynomolgus), un type de gros animal dont la posture et le fonctionnement desarticulations s'apparentent à l'homme. Nos études d'imagerie non invasive (telle qu'elle est pratiquéechez l'homme) et immunohistochimiques trois mois après implantation montrent une réparationsatisfaisante des lésions, en comparaison avec les lésions laissées non comblées. L'ensemble de nosrésultats montre pour la première fois que l'hydrogel IEIK13 est un biomatériau favorable pourreconstruire le cartilage et que le primate non-humain est un modèle préclinique unique pour évaluerl'efficacité de l'ingénierie tissulaire du cartilage / Cartilage is not vascularized and presents poor capacity of self-regeneration. Repairing thistissue is a challenge and current surgical techniques are not satisfactory in the long term. Cartilage isthus a good candidate for tissue engineering. Autologous chondrocyte transplantation (ACT) was thefirst cell therapy developed for cartilage repair. This procedure implies amplification of cells whichresults in chondrocyte dedifferentiation (loss of expression of type II collagen, the major protein ofcartilage and acquisition of expression of type I collagen, the major protein found in fibrous tissues).Thus, ACT results in implantation of fibroblastic cells producing fibrocartilage with biomechanicalproperties inferior to native articular cartilage. The international health agencies agree that ACT needsto be improved with better control of the chondrocyte phenotype and use of biomaterials. Therefore,cell therapy of cartilage needs to move towards tissue engineering of cartilage.The objective of our study was to evaluate the capacity of an innovative self-assemblingpeptide (IEIK13) to support cartilage matrix production by human chondrocytes. Our goal was to createa cartilage gel that can be implanted by arthroscopy. A main challenge was to meet the problem ofchondrocyte dedifferentiation induced by cell amplification necessary to increase the cellularreservoir. Amplification of human chondrocytes was performed in the presence of FGF-2 and insulin(cocktail FI), and redifferentiation was subsequently induced in IEIK13 gel with BMP-2, insulin, andtriiodothyronine T3 (cocktail BIT). The specific combination of these two cocktails alloweddedifferentiation-redifferentiation of chondrocytes. The status of the chondrocyte phenotype and thenature of the extracellular matrix secreted in gel were first assessed in vitro by real-time PCR, Westernblottingand immunhostochemistry analyses. With a view of clinical application, we then transplantedIEIK13-engineered cartilages into defects created in knees of an original model of non-human primate(cynomolgus monkey), a type of large animal whose anatomy and biomechanics mimic human. Ournon-invasive imaging analyses and our inmmunohistochemical studies performed three months afterimplantation show correct reparation of the lesions, in comparison with the defects left untreated.Altogether, our results demonstrate for the first time that IEIK13 is a suitable biomaterial for cartilagerepair and that cynomolgus monkey represents a unique preclinical model to evaluate efficiency ofcartilage tissue engineering.
Identifer | oai:union.ndltd.org:theses.fr/2018LYSE1257 |
Date | 19 November 2018 |
Creators | Dufour, Alexandre |
Contributors | Lyon, Mallein-Gérin, Frédéric, Perrier-Groult, Émeline |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds