Ce mémoire présente des résultats de régularité pour des problèmes d'équations aux dérivées partielles paraboliques. Dans la première partie nous nous intéressons à des problèmes à frontière libre issus du problème de<br />l'obstacle parabolique à coefficients variables. Nous montrons des résultats de régularité de la solution et de la frontière libre. Cette étude utilise des méthodes d'explosion et des formules de monotonie. La seconde partie est consacrée à l'étude d'un problème issu de la modélisation de l'agrégation en biologie : le système de<br />Keller-Segel. En utilisant une énergie libre, nous montrons l'existence d'une masse critique en deçà de laquelle les solutions existent et au delà de laquelle elles explosent en temps fini. Nous précisons leur comportement asymptotique, dans le cas où les solutions existent en temps long.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011381 |
Date | 12 December 2005 |
Creators | Blanchet, Adrien |
Publisher | Université Paris Dauphine - Paris IX |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds