Scientific findings recorded in literature help continuously guide scientific advancements, but manual approaches to accessing that knowledge are insufficient due to the sheer quantity of information and data available. Although pre-trained language models are being explored for their utility as knowledge bases and structured data repositories, there is a lack of research for this application in the biomedical domain. Therefore, the aim in this project was to determine how Generative Pre-trained Transformer models pre-trained on articles in the biomedical domain can be used to make relevant information more accessible. Several models (BioGPT, BioGPT-Large, and BioMedLM) were evaluated on the task of extracting chemical-protein relations between entities directly from the models through prompting. Prompts were formulated as a natural language text or an ordered triple, and provided in different settings (few-shot, one-shot, or zero-shot). Model-predictions were evaluated quantitatively as a multiclass classification task using a macro-averaged F1-score. The result showed that out of the explored methods, the best performance for extracting chemical-protein relations from article-abstracts was obtained using a triple-based text prompt on the largest model, BioMedLM, in the few-shot setting, albeit with low improvements from the baseline (+0.019 F1). There was no clear pattern for which prompt setting was favourable in terms of task performance, however, the triple based prompt was generally more robust than the natural language formulation. The task performance of the two smaller models underperformed the random baseline (by at best -0.026 and -0.001 F1). The impact of the prompt method was minimal in the smallest model, and the one-shot setting was the least sensitive to the prompt formulation in all models. However, there were more pronounced differences between the prompt methods in the few-shot setting of the larger models (+0.021-0.038 F1). The results suggested that the method of prompting and the size of the model impact the knowledge eliciting performance of a language model. Admittedly, the models mostly underperformed the baseline and future work needs to look into how to adapt generative language models to solve this task. Future research could investigate what impact automatic prompt-design methods and larger in-domain models have on the model performance. / De vetenskapliga upptäckter som presenteras inom litteraturen vägleder kontinuerligt vetenskapliga framsteg. Manuella tillvägagångssätt för att ta del av den kunskapen är otillräckliga på grund av den enorma mängd information och data som finns tillgänglig. Även om för-tränade språkmodeller utforskas för sin brukbarhet som kunskapsbaser och strukturerade dataförråd så finns det en brist på forskning inom den biomedicinska domänen. Målet med detta projekt var att utreda hur Generative Pre-trained Transformer (GPT) modeller för-tränade på biomedicinska artiklar kan användas för att öka tillgängligheten av relevant information inom denna domän. Olika modeller (BioGPT, BioGPT-Large, och BioMedLM) utvärderas på uppgiften att extrahera relationsinformation mellan entiteter direkt ur modellen genom en textprompt. En prompt formuleras genom naturlig text och som en ordnad trippel, och används i olika demonstrationsmiljöer (few-shot, one-shot, zero-shot). Modellförutsägelser utvärderas kvantitativt som ett multi-klass klassifikationsproblem genom ett genomsnittligt F1 värde. Resultatet indikerade att kemikalie-protein relationer från vetenskapliga artikelsammanfattningar kan extraheras med en högre sannolikhet än slumpen med en trippelbaserad prompt genom den största modellen, BioMedLM, i few-shot-miljön, dock med små förbättringar från baslinjen (+0.019 F1). Resultatet visade inga tydliga mönster gällande vilken demonstrationsmiljö som var mest gynnsam, men den trippelbaserade formuleringen var generellt mer robust än formuleringen som följde naturligt språk. Uppgiftsprestandan på de två mindre modellerna underpresterade den slumpmässiga baslinjen (med som bäst -0.026 och -0.001 F1). Effekten av valet av promptmetod var minimal med den minsta modellen, och one-shot-miljön var minst känslig för olika formuleringar hos alla modeller. Dock fanns det mer markanta skillnader mellan promptmetoder i few-shot-miljön hos de större modellerna (+0.021-0.038 F1). Resultatet antydde att valet av promptmetod och storleken på modell påverkar modellens förmåga att extrahera information. De utvärderade modellerna underpresterade dock baslinjen och fortsatt efterforskning behöver se över hur generativa språkmodeller kan anpassas för att lösa denna uppgift. Framtida forskning kan även undersöka vilken effekt automatiska promptdesignmetoder och större domänmodeller har på modellprestanda.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-343524 |
Date | January 2023 |
Creators | Hellberg, Ebba |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:896 |
Page generated in 0.0027 seconds