Les gliomes sont des tumeurs cérébrales infiltrantes difficilement curables, notamment à cause de la difficulté à visualiser toutes les infiltrations au bloc opératoire. Dans cette thèse, nous réalisons une étude clinique de spectroscopie de fluorescence de la protoporphyrine IX (PpIX) dans les gliomes de 10 patients selon l’hypothèse que les spectres collectés proviennent de la contribution de 2 états de la PpIX dont les proportions varient suivant la densité en cellules tumorales. Après avoir présenté le développement du système interventionnel proposant une excitation multi-longueurs d’onde, nous présentons son utilisation sur fantômes de PpIX mimant les propriétés des gliomes. Ceci permet tout d’abord d’obtenir les spectres émis par les 2 états séparément puis de proposer un modèle d’ajustement des spectres comme une combinaison linéaire des 2 spectres de référence sur la bande spectrale 608-637 nm. Ensuite, nous présentons la mise en place de l’étude clinique, notamment l’analyse de risques, avant d’appliquer ce système in vivo. Les mesures in vivo détectent de la fluorescence dans des tissus où le microscope chirurgical n’en détecte pas, ce qui pourrait s’expliquer par un changement d’état de la PpIX entre le cœur des gliomes et leurs infiltrations. L’intérêt de l’excitation multi-longueurs d’onde est démontré par la décroissance de la corrélation des spectres acquis aux trois excitations suivant la densité en cellules tumorale. Enfin, nous soulevons des pistes d’étude de l’identification peropératoire des zones de fonctionnalité cérébrale à l’aide d’une caméra optique ainsi que l’étude du temps de vie de fluorescence et de la fluorescence deux photons de la PpIX sur fantômes / Gliomas are infiltrative tumors of the brain which are yet hardly curable, notably because of the difficulty to precisely delimitate their margins during surgery. Intraoperative 5-ALA induced protoporphyrin IX (PpIX) fluorescence microscopy has shown its relevance to assist neurosurgeons but lacks sensitivity. In this thesis, we perform a spectroscopic clinical trial on 10 patients with the assumption that collected fluorescence is a linear combination of the contribution of two states of PpIX which proportions vary with the density of tumor cells. This work starts with the development of the intraoperative, portable and real time fluorescence spectroscopic device that provides multi-wavelength excitation. Then, we show its use on PpIX phantoms with tissues mimicking properties. This first enables to obtain a reference emitted spectrum for each state apart and then permits the development of a fitting model to adjust any emitted spectrum as a linear combination of the references in the spectral band 608-637 nm. Next, we present the steps led to get approvals for the clinical trial, especially the risk analysis. In vivo data analysis is then presented, showing that we detect fluorescence where current microscopes cannot, which could exhibit a change in PpIX state from glioma center to its margins. Besides, the relevance of multi-wavelength excitation is highlighted as the correlation between the three measured spectra of a same sample decreases with the density of tumor cells. Finally, the complementary need to intraoperatively identify cerebral functional areas is tackled with optical measurements as a perspective and other properties of PpIX on phantoms are also raised
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE1295 |
Date | 11 December 2017 |
Creators | Alston, Laure |
Contributors | Lyon, Rousseau, David, Montcel, Bruno, Hébert, Mathieu |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds