Cette thèse porte sur la dynamique de fronts de réaction-diffusion en présence de défauts localisés. Nous étudions des non-linéarités bistable et monostable pour lesquelles il existe des solutions exactes en milieu homogène. L'équation aux dérivées partielles est résolue numériquement et la solution est approchée en utilisant des solutions exactes. Parallèlement, nous développons une analyse en coordonnées collectives, position et largeur du front, basée sur des lois d'équilibre. Pour les deux non-linéarités, l'analyse approchée est en bon accord avec la solution numérique. Il est de plus possible de prédire l'arrêt du front dans le cas bistable. L'étude révèle des différences qualitatives entre les deux types de non linéarités. Elle montre l'importance des dimensions caractéristiques du défaut et du front. Enfin, elle fournit un modèle standardisé qui peut servir en théorie du contrôle ou pour la détermination de paramètres à partir de séries temporelles. / We study reaction-diffusion fronts in presence of a localized defect. We consider bistable and monostable nonlinearities for which exact solutions exist in the homogeneous case. The partial differential equation is solved numerically and the solution is fitted using these exact solutions. We also develop a collective coordinate analysis for the position and width of a front, based on balance laws. For both non linearities, the approximate analysis agrees well with the numerical solution. We cab predict the pinning of the front in the bistable case. The sudy reveals qualitative differences between the two nonlinearities. It shows the importance of the characteristic lenghts of the defect and the front. Finally it provides a reduced model, useful for control theory or for the determination of parameters from time-series.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAM0005 |
Date | 15 May 2012 |
Creators | Sarels, Benoît |
Contributors | Rouen, INSA, Caputo, Jean-Guy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds