La toxine bactérienne de Shiga se lie au glycosphingolipide (GSL) globotriaosylcéramide (Gb3) afin d’entrer par endocytose dans les cellules en utilisant une voie dépendante et indépendante de la clathrine. Dans la voie indépendante de la clathrine, la toxine de Shiga réorganise les lipides de la membrane de façon à imposer une contrainte mécanique sur la bicouche, conduisant ainsi à la formation de pic d’invagination d'endocytose profonds et étroits. Mécaniquement ce phénomène n’est pas encore compris, notamment il reste énigmatique, comment se traduisent les propriétés géométriques de l’agrégation des glycosphingolipides GSLS et de la toxine. Dans mon travail de thèse, via l’utilisation de la sous-unité B de la toxine de Shiga (STxB) comme un modèle, différentes espèces moléculaires de son récepteur Gb3 ont été synthétisés avec des structures délibérément choisis. Les études réalisées par imagerie de haute résolution et par la modélisation informatique ont permis d’élucider les contraintes mécano-chimique sous-jacente conduisant à une réorganisation efficace qui a pour résultat l’agrégation de la toxine et la réorganisation des lipides. En combinant des expériences de simulation sur ordinateur de dynamique des particules dissipatives (DPD) et des expériences sur des modèles de membranes cellulaires, nous avons fourni la preuve de l’induction d’une force de fluctuation-membrane, de type « force de Casimir », conduisant à l'agrégation des molécules de toxines associées à la membrane à des échelles de longueur mésoscoiques. Nous avons observé et mesuré, en outre la condensation lipidique induite par la toxine, quantitativement sur des monocouches de Langmuir en utilisant la réflectivité des rayons X (XR) et par la mesure de la diffraction des rayons X par incidence rasante (GIXD), fournissant ainsi une preuve directe de l'hypothèse que la toxine a le potentiel de réduire de façon asymétrique la surface moléculaire sur la partie membranaire exoplasmique, ce qui conduit à une déformation locale de la membrane. Durant ma thèse, nos efforts ont été consacrés à la réalisation de nouveaux glycosphinolipides (GSL) comme outils chimiques à visée biologique. Par ailleurs, une nouvelle stratégie de reconstitution de GSL fonctionnels sur la membrane cellulaire, basée sur une réaction de ligation de type « click » entre un glycosyl-cyclooctyne et un azido-sphingosine a été étudiée. Les résultats obtenus sur les cellules se sont avérés beaucoup moins efficace que ceux in vitro. Une poursuite de l'optimisation de cette méthodologie est actuellement en cours. Une sonde fluorescente du glycosphinolipide Gb3, marquée à l’Alexa Fluor 568 lui-même lié par l'intermédiaire d'un bras PEG-α à la position de la chaîne acyle, a été synthétisée. Cette sonde se lie à la STxB sur couche mince de TLC, mais pas sur des membranes modèles. D'autres améliorations sont discutées. / Bacterial Shiga toxins bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3) to enter cells by clathrin-dependent and independent endocytosis. In the clathrin-independent pathway, Shiga toxin reorganizes membrane lipids in a way such as to impose mechanical strain onto the bilayer, thus leading to the formation of deep and narrow endocytic pits. Mechanistically how this occurs is not yet understood, and notably how the geometric properties of toxin-GSLs complexes translate into function has remained enigmatic. In my thesis work, using the B-subunit of Shiga toxin (STxB) as a model, different molecular species of its receptor Gb3 have been synthesized with deliberately chosen structures, coupled with high resolution imaging and computational modeling, to understand the underlying mechano-chemical constraints leading to efficient toxin clustering and lipids reorganization. By combining dissipative particle dynamics (DPD) computer simulation and experiments on cell and model membranes, we provided evidence that a membrane fluctuation-induced force, termed Casimir-like force, drives the aggregation of tightly membrane-associated toxin molecules at mesoscopic length scales. Furthermore, toxin-induced lipid condensation was observed and measured quantitatively on Langmuir monolayers using X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), thereby providing direct evidence for the hypothesis that the toxin has the potential to asymmetrically reduce the molecular area of the exoplasmic membrane leaflet, leading to local membrane deformation. During my PhD, effort was also invested to develop new GSL tools applied to the biological setting. A novel strategy based on the Cu-free click reaction between glycosyl-cyclooctyne and azido-sphingosine was designed with the goal to functionally incorporate GSLs into cellular membranes. Following the synthesis work, click reactions have been performed in solution and on cells. Compared to the former, results on cells were far less efficient. Further optimization is currently ongoing. A fluorescently labeled Gb3 probe with Alexa Fluor 568 coupled via a PEG linker to the α-position of the acyl chain, was synthesized, to which STxB bound on TLCs, but not on model membranes. Further improvements are discussed.
Identifer | oai:union.ndltd.org:theses.fr/2015USPCB147 |
Date | 12 November 2015 |
Creators | Gao, Haifei |
Contributors | Sorbonne Paris Cité, Florent, Jean-Claude, Johannes, Ludger |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0069 seconds