Return to search

Asymptotic behaviour of cellular automata : computation and randomness

L'objet de cette thèse est l'étude de l'auto-organisation dans les automates cellulaires unidimensionnels.Les automates cellulaires sont un système dynamique discret ainsi qu'un modèle de calcul massivement parallèle, ces deux aspects s'influençant mutuellement. L'auto-organisation est un phénomène où un comportement organisé est observé asymptotiquement, indépendamment de la configuration initiale. Typiquement, nous considérons que le point initial est tiré aléatoirement: étant donnée une mesure de probabilité décrivant une distribution de configurations initiales, nous étudions son évolution sous l'action de l'automate, le comportement asymptotique étant décrit par la(les) mesure(s) limite(s).Notre étude présente deux aspects. D'abord, nous caractérisons les mesures qui peuvent être atteintes à la limite par les automates cellulaires; ceci correspond aux différents comportements asymptotiques pouvant apparaître en simulation. Cette approche rejoint divers résultats récents caractérisant des paramètres de systèmes dynamiques par des conditions de calculabilité, utilisant des outils d'analyse calculable. Il s'agit également d'une description de la puissance de calcul des automates cellulaires sur les mesures.Ensuite, nous proposons des outils pour létude de l'auto-organisation dans des classes restreintes. Nous introduisons un cadre d'étude d'automates pouvant être vus comme un ensemble de particules en interaction, afin d'en déduire des propriétés sur leur comportement asymptotique. Une dernière direction de recherche concerne les automates convergeant vers la mesure uniforme sur une large classe de mesures initiales (phénomène de randomisation). / The subject of this thesis is the study of self-organization in one-dimensional cellular automata.Cellular automata are a discrete dynamical system as well as a massively parallel model of computation, both theseaspects influencing each other. Self-organisation is a phenomenon where an organised behaviour is observed asymptotically, regardless of the initial configuration. Typically, we consider that the initial point is sampled at random; that is, we consider a probability measure describing the distribution of theinitial configurations, and we study its evolution under the action of the automaton, the asymptoticbehaviour being described by the limit measure(s).Our work is two-sided. On the one hand, we characterise measures that can bereached as limit measures by cellular automata; this corresponds to the possible kinds of asymptoticbehaviours that can arise in simulations. This approach is similar to several recent results characterising someparameters of dynamical systems by computability conditions, using tools from computable analysis. Thisresult is also a description of the measure-theoretical computational power of cellular automata.On the other hand, we provided tools for the practical study of self-organization in restricted classes of cellularautomata. We introduced a frameworkfor cellular automata that can be seen as a set of interacting particles, in order todeduce properties concerning their asymptotic behaviour. Another ongoing research direction focus on cellular automata that converge to the uniform measurefor a wide class of initial measures (randomization phenomenon).

Identiferoai:union.ndltd.org:theses.fr/2014AIXM4729
Date26 September 2014
CreatorsHellouin de Menibus, Benjamin
ContributorsAix-Marseille, Bressaud, Xavier, Sablik, Mathieu
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds