Sectors of security, safety, and defence require methods for identifying people on the individual level. Automation of these tasks has the potential of outperforming manual labor, as well as relieving workloads. The ever-extending surveillance camera networks, advances in human pose estimation from monocular cameras, together with the progress of deep learning techniques, pave the way for automated walking gait analysis as an identification method. This thesis investigates the use of 2D kinematic pose sequences to represent gait, monocularly extracted from a limited dataset containing walking individuals captured from five camera views. The sequential information of the gait is captured using recurrent neural networks. Techniques in deep metric learning are applied to evaluate two network models, with contrasting output dimensionalities, against deep-metric-, and non-deep-metric-based embedding spaces. The results indicate that the gait representation, network designs, and network learning structure show promise when identifying individuals, scaling particularly well to unseen individuals. However, with the limited dataset, the network models performed best when the dataset included the labels from both the individuals and the camera views simultaneously, contrary to when the data only contained the labels from the individuals without the information of the camera views. For further investigations, an extension of the data would be required to evaluate the accuracy and effectiveness of these methods, for the re-identification task of each individual. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-178139 |
Date | January 2021 |
Creators | Engström, Isak |
Publisher | Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds