• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Contrastive Metric Learning to Detect Polymicrogyria in Pediatric Brain MRI

Zhang, Lingfeng 28 November 2022 (has links)
Polymicrogyria (PMG) is one brain disease that mainly occurs in the pediatric brain. Heavy PMG will cause seizures, delayed development, and a series of problems. For this reason, it is critical to effectively identify PMG and start early treatment. Radiologists typically identify PMG through magnetic resonance imaging scans. In this study, we create and open a pediatric MRI dataset (named PPMR dataset) including PMG and controls from the Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada. The difference between PMG MRIs and control MRIs is subtle and the true distribution of the features of the disease is unknown. Hence, we propose a novel center-based deep contrastive metric learning loss function (named cDCM Loss) to deal with this difficult problem. Cross-entropy-based loss functions do not lead to models with good generalization on small and imbalanced dataset with partially known distributions. We conduct exhaustive experiments on a modified CIFAR-10 dataset to demonstrate the efficacy of our proposed loss function compared to cross-entropy-based loss functions and the state-of-the-art Deep SAD loss function. Additionally, based on our proposed loss function, we customize a deep learning model structure that integrates dilated convolution, squeeze-and-excitation blocks and feature fusion for our PPMR dataset, to achieve 92.01% recall. Since our suggested method is a computer-aided tool to assist radiologists in selecting potential PMG MRIs, 55.04% precision is acceptable. To our best knowledge, this research is the first to apply machine learning techniques to identify PMG only from MRI and our innovative method achieves better results than baseline methods.
2

Automated Gait Analysis : Using Deep Metric Learning

Engström, Isak January 2021 (has links)
Sectors of security, safety, and defence require methods for identifying people on the individual level. Automation of these tasks has the potential of outperforming manual labor, as well as relieving workloads. The ever-extending surveillance camera networks, advances in human pose estimation from monocular cameras, together with the progress of deep learning techniques, pave the way for automated walking gait analysis as an identification method. This thesis investigates the use of 2D kinematic pose sequences to represent gait, monocularly extracted from a limited dataset containing walking individuals captured from five camera views. The sequential information of the gait is captured using recurrent neural networks. Techniques in deep metric learning are applied to evaluate two network models, with contrasting output dimensionalities, against deep-metric-, and non-deep-metric-based embedding spaces. The results indicate that the gait representation, network designs, and network learning structure show promise when identifying individuals, scaling particularly well to unseen individuals. However, with the limited dataset, the network models performed best when the dataset included the labels from both the individuals and the camera views simultaneously, contrary to when the data only contained the labels from the individuals without the information of the camera views. For further investigations, an extension of the data would be required to evaluate the accuracy and effectiveness of these methods, for the re-identification task of each individual. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
3

Learning Pose and State-Invariant Object Representations for Fine-Grained Recognition and Retrieval

Rohan Sarkar (19065215) 11 July 2024 (has links)
<p dir="ltr">Object Recognition and Retrieval is a fundamental problem in Computer Vision that involves recognizing objects and retrieving similar object images through visual queries. While deep metric learning is commonly employed to learn image embeddings for solving such problems, the representations learned using existing methods are not robust to changes in viewpoint, pose, and object state, especially for fine-grained recognition and retrieval tasks. To overcome these limitations, this dissertation aims to learn robust object representations that remain invariant to such transformations for fine-grained tasks. First, it focuses on learning dual pose-invariant embeddings to facilitate recognition and retrieval at both the category and finer object-identity levels by learning category and object-identity specific representations in separate embedding spaces simultaneously. For this, the PiRO framework is introduced that utilizes an attention-based dual encoder architecture and novel pose-invariant ranking losses for each embedding space to disentangle the category and object representations while learning pose-invariant features. Second, the dissertation introduces ranking losses that cluster multi-view images of an object together in both the embedding spaces while simultaneously pulling the embeddings of two objects from the same category closer in the category embedding space to learn fundamental category-specific attributes and pushing them apart in the object embedding space to learn discriminative features to distinguish between them. Third, the dissertation addresses state-invariance and introduces a novel ObjectsWithStateChange dataset to facilitate research in recognizing fine-grained objects with state changes involving structural transformations in addition to pose and viewpoint changes. Fourth, it proposes a curriculum learning strategy to progressively sample object images that are harder to distinguish for training the model, enhancing its ability to capture discriminative features for fine-grained tasks amidst state changes and other transformations. Experimental evaluations demonstrate significant improvements in object recognition and retrieval performance compared to previous methods, validating the effectiveness of the proposed approaches across several challenging datasets under various transformations.</p>

Page generated in 0.0728 seconds