The Swedish real estate market has been digitalized over the past decade with the current practice being to post your real estate advertisement online. A question that has arisen is how a seller can optimize their public listing to maximize the selling premium. This paper analyzes the use of three machine learning methods to solve this problem: Linear Regression, Decision Tree Regressor and Random Forest Regressor. The aim is to retrieve information regarding how certain attributes contribute to the premium value. The dataset used contains apartments sold within the years of 2014-2018 in the Östermalm / Djurgården district in Stockholm, Sweden. The resulting models returned an R2-value of approx. 0.26 and Mean Absolute Error of approx. 0.06. While the models were not accurate regarding prediction of premium, information was still able to be extracted from the models. In conclusion, a high amount of views and a publication made in April provide the best conditions for an advertisement to reach a high selling premium. The seller should try to keep the amount of days since publication lower than 15.5 days and avoid publishing on a Tuesday. / Den svenska bostadsmarknaden har blivit alltmer digitaliserad under det senaste årtiondet med nuvarande praxis att säljaren publicerar sin bostadsannons online. En fråga som uppstår är hur en säljare kan optimera sin annons för att maximera budpremie. Denna studie analyserar tre maskininlärningsmetoder för att lösa detta problem: Linear Regression, Decision Tree Regressor och Random Forest Regressor. Syftet är att utvinna information om de signifikanta attribut som påverkar budpremien. Det dataset som använts innehåller lägenheter som såldes under åren 2014-2018 i Stockholmsområdet Östermalm / Djurgården. Modellerna som togs fram uppnådde ett R²-värde på approximativt 0.26 och Mean Absolute Error på approximativt 0.06. Signifikant information kunde extraheras from modellerna trots att de inte var exakta i att förutspå budpremien. Sammanfattningsvis skapar ett stort antal visningar och en publicering i april de bästa förutsättningarna för att uppnå en hög budpremie. Säljaren ska försöka hålla antal dagar sedan publicering under 15.5 dagar och undvika att publicera på tisdagar.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-240401 |
Date | January 2018 |
Creators | Ekeberg, Lukas, Fahnehjelm, Alexander |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2018:432 |
Page generated in 0.0031 seconds