L'objectif de cette thèse est de développer des solutions efficaces pour laclassification interactive des images de télédétection. Cet objectif a étéréalisé en répondant à quatre questions de recherche.La première question porte sur le fait que les descripteursd'images proposées dans la littérature obtiennent de bons résultats dansdiverses applications, mais beaucoup d'entre eux n'ont jamais été utilisés pour la classification des images de télédétection. Nous avons testé douzedescripteurs qui codent les propriétés spectrales et la couleur, ainsi que septdescripteurs de texture. Nous avons également proposé une méthodologie baséesur le classificateur KNN (K plus proches voisins) pour l'évaluation desdescripteurs dans le contexte de la classification. Les descripteurs Joint Auto-Correlogram (JAC),Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) etQuantized Compound Change Histogram (QCCH), ont obtenu les meilleursrésultats dans les expériences de reconnaissance des plantations de café et depâturages.La deuxième question se rapporte au choix del'échelle de segmentation pour la classification d'images baséesur objets.Certaines méthodes récemment proposées exploitent des caractéristiques extraitesdes objets segmentés pour améliorer classification des images hauterésolution. Toutefois, le choix d'une bonne échelle de segmentation est unetâche difficile.Ainsi, nous avons proposé deux approches pour la classification multi-échelles fondées sur le les principes du Boosting, qui permet de combiner desclassifieurs faibles pour former un classifieur fort.La première approche, Multiscale Classifier (MSC), construit unclassifieur fort qui combine des caractéristiques extraites de plusieurséchelles de segmentation. L'autre, Hierarchical Multiscale Classifier(HMSC), exploite la topologie hiérarchique de régions segmentées afind'améliorer l'efficacité des classifications sans perte de précision parrapport au MSC. Les expériences montrent qu'il est préférable d'utiliser des plusieurs échelles plutôt qu'une seul échelle de segmentation. Nous avons également analysé et discuté la corrélation entre lesdescripteurs et des échelles de segmentation.La troisième question concerne la sélection des exemplesd'apprentissage et l'amélioration des résultats de classification basés sur lasegmentation multiéchelle. Nous avons proposé une approche pour laclassification interactive multi-échelles des images de télédétection. Ils'agit d'une stratégie d'apprentissage actif qui permet le raffinement desrésultats de classification par l'utilisateur. Les résultats des expériencesmontrent que la combinaison des échelles produit de meilleurs résultats que leschaque échelle isolément dans un processus de retour de pertinence. Par ailleurs,la méthode interactive permet d'obtenir de bons résultats avec peud'interactions de l'utilisateur. Il n'a besoin que d'une faible partie del'ensemble d'apprentissage pour construire des classificateurs qui sont aussiforts que ceux générés par une méthode supervisée qui utilise l'ensembled'apprentissage complet.La quatrième question se réfère au problème de l'extraction descaractéristiques d'un hiérarchie des régions pour la classificationmulti-échelles. Nous avons proposé une stratégie qui exploite les relationsexistantes entre les régions dans une hiérarchie. Cette approche, appelée BoW-Propagation, exploite le modèle de bag-of-visual-word pour propagerles caractéristiques entre les échelles de la hiérarchie. Nous avons égalementétendu cette idée pour propager des descripteurs globaux basés sur leshistogrammes, l'approche H-Propagation. Ces approches accélèrent leprocessus d'extraction et donnent de bons résultats par rapport à l'extractionde descripteurs globaux. / A huge effort has been made in the development of image classification systemswith the objective of creating high-quality thematic maps and to establishprecise inventories about land cover use. The peculiarities of Remote SensingImages (RSIs) combined with the traditional image classification challengesmake RSI classification a hard task. Many of the problems are related to therepresentation scale of the data, and to both the size and therepresentativeness of used training set.In this work, we addressed four research issues in order to develop effectivesolutions for interactive classification of remote sensing images.The first research issue concerns the fact that image descriptorsproposed in the literature achieve good results in various applications, butmany of them have never been used in remote sensing classification tasks.We have tested twelve descriptors that encodespectral/color properties and seven texture descriptors. We have also proposeda methodology based on the K-Nearest Neighbor (KNN) classifier for evaluationof descriptors in classification context. Experiments demonstrate that JointAuto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition(SID), and Quantized Compound Change Histogram (QCCH) yield the best results incoffee and pasture recognition tasks.The second research issue refers to the problem of selecting the scaleof segmentation for object-based remote sensing classification. Recentlyproposed methods exploit features extracted from segmented objects to improvehigh-resolution image classification. However, the definition of the scale ofsegmentation is a challenging task. We have proposedtwo multiscale classification approaches based on boosting of weak classifiers.The first approach, Multiscale Classifier (MSC), builds a strongclassifier that combines features extracted from multiple scales ofsegmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits thehierarchical topology of segmented regions to improve training efficiencywithout accuracy loss when compared to the MSC. Experiments show that it isbetter to use multiple scales than use only one segmentation scale result. Wehave also analyzed and discussed about the correlation among the useddescriptors and the scales of segmentation.The third research issue concerns the selection of training examples and therefinement of classification results through multiscale segmentation. We have proposed an approach forinteractive multiscale classification of remote sensing images.It is an active learning strategy that allows the classification resultrefinement by the user along iterations. Experimentalresults show that the combination of scales produces better results thanisolated scales in a relevance feedback process. Furthermore, the interactivemethod achieves good results with few user interactions. The proposed methodneeds only a small portion of the training set to build classifiers that are asstrong as the ones generated by a supervised method that uses the whole availabletraining set.The fourth research issue refers to the problem of extracting features of ahierarchy of regions for multiscale classification. We have proposed a strategythat exploits the existing relationships among regions in a hierarchy. Thisapproach, called BoW-Propagation, exploits the bag-of-visual-word model topropagate features along multiple scales. We also extend this idea topropagate histogram-based global descriptors, the H-Propagation method. The proposedmethods speed up the feature extraction process and yield good results when compared with globallow-level extraction approaches.
Identifer | oai:union.ndltd.org:theses.fr/2013CERG0626 |
Date | 25 March 2013 |
Creators | Dos santos, Jefersson Alex |
Contributors | Cergy-Pontoise, Universidade estadual de Campinas (Brésil), Philipp-Foliguet, Sylvie, Gosselin, Philippe-Henri |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds