• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação semi-automática de componentes Java / Semi-automatic classification of Java components

Melo, Claudia de Oliveira 29 September 2006 (has links)
As recentes tecnologias de desenvolvimento e distribuição de componentes possibilitaram o aumento do número de componentes disponíveis no mercado. No entanto, eles muitas vezes estão dispersos e não publicados adequadamente para a comunidade de pesquisa e desenvolvimento de software. Encontrar componentes apropriados para solucionar um problema particular não é uma tarefa simples e novas técnicas devem ser desenvolvidas para o reuso efetivo de componentes. Um dos maiores desafios em reusar componentes consiste em classificá-los corretamente para futuras consultas. Classificar componentes para possibilitar uma busca eficaz depende da qualidade das informações adquiridas, que viabilizam melhor precisão e cobertura das consultas ao encontrar componentes reutilizáveis em potencial. Ao mesmo tempo, mecanismos de classificação e busca devem ser fáceis o suficiente para convencer os desenvolvedores a reusar componentes. Este trabalho estuda as técnicas de classificação de componentes de software, repositórios e métodos de busca. é apresentada uma proposta de modelo de classificação de componentes que considera não apenas sua função, mas o negócio onde ele está inserido e seus atributos de qualidade. Um método de preenchimento semi-automático das informações é proposto, de modo a diminuir os custos de classificação. O protótipo REUSE+ foi construído para exemplificar o uso do modelo e do método de classificação semi-automática, de forma a validar a proposta, destacando, por fim, as principais contribuições do trabalho. / The recent developments on components technologies have increased the number of components available to the market. These components are, however, distributed overall the world and not properly advertised to the research and development communities. Finding the appropriate components to solve a particular problem is not very straightforward and new techniques must be developed to effectively reuse components. One of the great challenges in reusing components is concerned with how to actually classify components \"properly\" in order to further retrieve them. Classifying components for effective retrieval depends on acquiring the appropriate information in classification to improve the precision and recall rates in retrieval; finding only the potentially reusable components and not missing potential solutions. At the same time, the classification and retrieval mechanisms must be easy enough to persuade developers to reuse components. This work studies the classification techniques of software components, repository and retrieval methods. Hereafter is presented a proposal of components classification model that considers not just its function, but business and quality attributes. It is proposed a semi-automatic classification mechanism of software information, allowing a cheaper classification. REUSE+ prototype was built to exemplify the use of model and method of semi-automatic classification, allowing the described proposal validation, highlighting at the end the mainly contributions of the work.
2

Classificação semi-automática de componentes Java / Semi-automatic classification of Java components

Claudia de Oliveira Melo 29 September 2006 (has links)
As recentes tecnologias de desenvolvimento e distribuição de componentes possibilitaram o aumento do número de componentes disponíveis no mercado. No entanto, eles muitas vezes estão dispersos e não publicados adequadamente para a comunidade de pesquisa e desenvolvimento de software. Encontrar componentes apropriados para solucionar um problema particular não é uma tarefa simples e novas técnicas devem ser desenvolvidas para o reuso efetivo de componentes. Um dos maiores desafios em reusar componentes consiste em classificá-los corretamente para futuras consultas. Classificar componentes para possibilitar uma busca eficaz depende da qualidade das informações adquiridas, que viabilizam melhor precisão e cobertura das consultas ao encontrar componentes reutilizáveis em potencial. Ao mesmo tempo, mecanismos de classificação e busca devem ser fáceis o suficiente para convencer os desenvolvedores a reusar componentes. Este trabalho estuda as técnicas de classificação de componentes de software, repositórios e métodos de busca. é apresentada uma proposta de modelo de classificação de componentes que considera não apenas sua função, mas o negócio onde ele está inserido e seus atributos de qualidade. Um método de preenchimento semi-automático das informações é proposto, de modo a diminuir os custos de classificação. O protótipo REUSE+ foi construído para exemplificar o uso do modelo e do método de classificação semi-automática, de forma a validar a proposta, destacando, por fim, as principais contribuições do trabalho. / The recent developments on components technologies have increased the number of components available to the market. These components are, however, distributed overall the world and not properly advertised to the research and development communities. Finding the appropriate components to solve a particular problem is not very straightforward and new techniques must be developed to effectively reuse components. One of the great challenges in reusing components is concerned with how to actually classify components \"properly\" in order to further retrieve them. Classifying components for effective retrieval depends on acquiring the appropriate information in classification to improve the precision and recall rates in retrieval; finding only the potentially reusable components and not missing potential solutions. At the same time, the classification and retrieval mechanisms must be easy enough to persuade developers to reuse components. This work studies the classification techniques of software components, repository and retrieval methods. Hereafter is presented a proposal of components classification model that considers not just its function, but business and quality attributes. It is proposed a semi-automatic classification mechanism of software information, allowing a cheaper classification. REUSE+ prototype was built to exemplify the use of model and method of semi-automatic classification, allowing the described proposal validation, highlighting at the end the mainly contributions of the work.
3

Semi-automatic Classification of Remote Sensing Images

Dos santos, Jefersson Alex 25 March 2013 (has links) (PDF)
A huge effort has been made in the development of image classification systemswith the objective of creating high-quality thematic maps and to establishprecise inventories about land cover use. The peculiarities of Remote SensingImages (RSIs) combined with the traditional image classification challengesmake RSI classification a hard task. Many of the problems are related to therepresentation scale of the data, and to both the size and therepresentativeness of used training set.In this work, we addressed four research issues in order to develop effectivesolutions for interactive classification of remote sensing images.The first research issue concerns the fact that image descriptorsproposed in the literature achieve good results in various applications, butmany of them have never been used in remote sensing classification tasks.We have tested twelve descriptors that encodespectral/color properties and seven texture descriptors. We have also proposeda methodology based on the K-Nearest Neighbor (KNN) classifier for evaluationof descriptors in classification context. Experiments demonstrate that JointAuto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition(SID), and Quantized Compound Change Histogram (QCCH) yield the best results incoffee and pasture recognition tasks.The second research issue refers to the problem of selecting the scaleof segmentation for object-based remote sensing classification. Recentlyproposed methods exploit features extracted from segmented objects to improvehigh-resolution image classification. However, the definition of the scale ofsegmentation is a challenging task. We have proposedtwo multiscale classification approaches based on boosting of weak classifiers.The first approach, Multiscale Classifier (MSC), builds a strongclassifier that combines features extracted from multiple scales ofsegmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits thehierarchical topology of segmented regions to improve training efficiencywithout accuracy loss when compared to the MSC. Experiments show that it isbetter to use multiple scales than use only one segmentation scale result. Wehave also analyzed and discussed about the correlation among the useddescriptors and the scales of segmentation.The third research issue concerns the selection of training examples and therefinement of classification results through multiscale segmentation. We have proposed an approach forinteractive multiscale classification of remote sensing images.It is an active learning strategy that allows the classification resultrefinement by the user along iterations. Experimentalresults show that the combination of scales produces better results thanisolated scales in a relevance feedback process. Furthermore, the interactivemethod achieves good results with few user interactions. The proposed methodneeds only a small portion of the training set to build classifiers that are asstrong as the ones generated by a supervised method that uses the whole availabletraining set.The fourth research issue refers to the problem of extracting features of ahierarchy of regions for multiscale classification. We have proposed a strategythat exploits the existing relationships among regions in a hierarchy. Thisapproach, called BoW-Propagation, exploits the bag-of-visual-word model topropagate features along multiple scales. We also extend this idea topropagate histogram-based global descriptors, the H-Propagation method. The proposedmethods speed up the feature extraction process and yield good results when compared with globallow-level extraction approaches.
4

Semi-automatic Classification of Remote Sensing Images / Classification semi-automatique des images de télédétection

Dos santos, Jefersson Alex 25 March 2013 (has links)
L'objectif de cette thèse est de développer des solutions efficaces pour laclassification interactive des images de télédétection. Cet objectif a étéréalisé en répondant à quatre questions de recherche.La première question porte sur le fait que les descripteursd'images proposées dans la littérature obtiennent de bons résultats dansdiverses applications, mais beaucoup d'entre eux n'ont jamais été utilisés pour la classification des images de télédétection. Nous avons testé douzedescripteurs qui codent les propriétés spectrales et la couleur, ainsi que septdescripteurs de texture. Nous avons également proposé une méthodologie baséesur le classificateur KNN (K plus proches voisins) pour l'évaluation desdescripteurs dans le contexte de la classification. Les descripteurs Joint Auto-Correlogram (JAC),Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) etQuantized Compound Change Histogram (QCCH), ont obtenu les meilleursrésultats dans les expériences de reconnaissance des plantations de café et depâturages.La deuxième question se rapporte au choix del'échelle de segmentation pour la classification d'images baséesur objets.Certaines méthodes récemment proposées exploitent des caractéristiques extraitesdes objets segmentés pour améliorer classification des images hauterésolution. Toutefois, le choix d'une bonne échelle de segmentation est unetâche difficile.Ainsi, nous avons proposé deux approches pour la classification multi-échelles fondées sur le les principes du Boosting, qui permet de combiner desclassifieurs faibles pour former un classifieur fort.La première approche, Multiscale Classifier (MSC), construit unclassifieur fort qui combine des caractéristiques extraites de plusieurséchelles de segmentation. L'autre, Hierarchical Multiscale Classifier(HMSC), exploite la topologie hiérarchique de régions segmentées afind'améliorer l'efficacité des classifications sans perte de précision parrapport au MSC. Les expériences montrent qu'il est préférable d'utiliser des plusieurs échelles plutôt qu'une seul échelle de segmentation. Nous avons également analysé et discuté la corrélation entre lesdescripteurs et des échelles de segmentation.La troisième question concerne la sélection des exemplesd'apprentissage et l'amélioration des résultats de classification basés sur lasegmentation multiéchelle. Nous avons proposé une approche pour laclassification interactive multi-échelles des images de télédétection. Ils'agit d'une stratégie d'apprentissage actif qui permet le raffinement desrésultats de classification par l'utilisateur. Les résultats des expériencesmontrent que la combinaison des échelles produit de meilleurs résultats que leschaque échelle isolément dans un processus de retour de pertinence. Par ailleurs,la méthode interactive permet d'obtenir de bons résultats avec peud'interactions de l'utilisateur. Il n'a besoin que d'une faible partie del'ensemble d'apprentissage pour construire des classificateurs qui sont aussiforts que ceux générés par une méthode supervisée qui utilise l'ensembled'apprentissage complet.La quatrième question se réfère au problème de l'extraction descaractéristiques d'un hiérarchie des régions pour la classificationmulti-échelles. Nous avons proposé une stratégie qui exploite les relationsexistantes entre les régions dans une hiérarchie. Cette approche, appelée BoW-Propagation, exploite le modèle de bag-of-visual-word pour propagerles caractéristiques entre les échelles de la hiérarchie. Nous avons égalementétendu cette idée pour propager des descripteurs globaux basés sur leshistogrammes, l'approche H-Propagation. Ces approches accélèrent leprocessus d'extraction et donnent de bons résultats par rapport à l'extractionde descripteurs globaux. / A huge effort has been made in the development of image classification systemswith the objective of creating high-quality thematic maps and to establishprecise inventories about land cover use. The peculiarities of Remote SensingImages (RSIs) combined with the traditional image classification challengesmake RSI classification a hard task. Many of the problems are related to therepresentation scale of the data, and to both the size and therepresentativeness of used training set.In this work, we addressed four research issues in order to develop effectivesolutions for interactive classification of remote sensing images.The first research issue concerns the fact that image descriptorsproposed in the literature achieve good results in various applications, butmany of them have never been used in remote sensing classification tasks.We have tested twelve descriptors that encodespectral/color properties and seven texture descriptors. We have also proposeda methodology based on the K-Nearest Neighbor (KNN) classifier for evaluationof descriptors in classification context. Experiments demonstrate that JointAuto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition(SID), and Quantized Compound Change Histogram (QCCH) yield the best results incoffee and pasture recognition tasks.The second research issue refers to the problem of selecting the scaleof segmentation for object-based remote sensing classification. Recentlyproposed methods exploit features extracted from segmented objects to improvehigh-resolution image classification. However, the definition of the scale ofsegmentation is a challenging task. We have proposedtwo multiscale classification approaches based on boosting of weak classifiers.The first approach, Multiscale Classifier (MSC), builds a strongclassifier that combines features extracted from multiple scales ofsegmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits thehierarchical topology of segmented regions to improve training efficiencywithout accuracy loss when compared to the MSC. Experiments show that it isbetter to use multiple scales than use only one segmentation scale result. Wehave also analyzed and discussed about the correlation among the useddescriptors and the scales of segmentation.The third research issue concerns the selection of training examples and therefinement of classification results through multiscale segmentation. We have proposed an approach forinteractive multiscale classification of remote sensing images.It is an active learning strategy that allows the classification resultrefinement by the user along iterations. Experimentalresults show that the combination of scales produces better results thanisolated scales in a relevance feedback process. Furthermore, the interactivemethod achieves good results with few user interactions. The proposed methodneeds only a small portion of the training set to build classifiers that are asstrong as the ones generated by a supervised method that uses the whole availabletraining set.The fourth research issue refers to the problem of extracting features of ahierarchy of regions for multiscale classification. We have proposed a strategythat exploits the existing relationships among regions in a hierarchy. Thisapproach, called BoW-Propagation, exploits the bag-of-visual-word model topropagate features along multiple scales. We also extend this idea topropagate histogram-based global descriptors, the H-Propagation method. The proposedmethods speed up the feature extraction process and yield good results when compared with globallow-level extraction approaches.
5

[en] THE CREATION OF A SEMI-AUTOMATIC CLASSIFICATION MODEL USING GEOGRAPHIC KNOWLEDGE: A CASE STUDY IN THE NORTHERN PORTION OF THE TIJUCA MASSIF - RJ / [pt] A CRIAÇÃO DE UM MODELO DE CLASSIFICAÇÃO SEMI-AUTOMÁTICA UTILIZANDO CONHECIMENTO GEOGRÁFICO: UM ESTUDO DE CASO NA PORÇÃO SETENTRIONAL DO MACIÇO DA TIJUCA - RJ

RAFAEL DA SILVA NUNES 30 August 2018 (has links)
[pt] Os processos de transformação da paisagem são resultantes da interação de elementos (bióticos e abióticos) que compõe a superfície da Terra. Baseia-se, a partir de uma perspectiva holística, no inter-relacionamento de uma série de ações e objetos que confluem para que a paisagem seja percebida como um momento sintético da confluência de inúmeras temporalidades. Desta maneira, as geotecnologias passam a se constituir como um importante aparato técnico-científico para a interpretação desta realidade ao possibilitar novas e diferentes formas do ser humano interpretar a paisagem. Um dos produtos gerados a partir desta interpretação é a classificação de uso e cobertura do solo e que se configura como um instrumento central para a análise das dinâmicas territoriais. Desta maneira, o objetivo do presente trabalho é elaboração de um modelo de classificação semi-automática baseada em conhecimento geográfico para o levantamento do padrão de uso e cobertura da paisagem a partir da utilização de imagens de satélite de alta resolução, tendo como recorte analítico uma área na porção setentrional no Maciço da Tijuca. O modelo baseado na análise de imagens baseadas em objetos, quando confrontados com a classificação visual, culminou em um valor acima de 80 por cento de correspondência tanto para imagens de 2010 e 2009, apresentando valores bastante elevados também na comparação classe a classe. A elaboração do presente modelo contribuiu diretamente para a otimização da produção dos dados elaborados contribuindo sobremaneira para a aceleração da interpretação das imagens analisadas, assim como para a minimização de erros ocasionados pela subjetividade atrelada ao próprio classificador. / [en] The transformation processes of the landscape are results from the interaction of factors (biotic and abiotic) that makes up the Earth s surface. This interaction, from a holistic perspective, is then based on the inter-relationship of a series of actions and objects that converge so that landscape is perceived as a moment of confluence of numerous synthetic temporalities. Thus, the geotechnologies come to constitute an important technical and scientific apparatus for the interpretation of this reality by enabling new and different ways of interpreting the human landscape. One of the products that can be generated from this interpretation is the use classification and land cover and is configured as a central instrument for the analysis of territorial dynamics. Thus, the aim of this work is the development of a semi-automatic classification model based on geographic knowledge to survey the pattern of land use and cover the landscape from the use of satellite images of high resolution, with the analytical approach an area in the northern portion of the Tijuca Massif. The model built on an Object-Based Image Analysis, when confronted with the visual classification, culminated in a value above 80 percent match for 2010 and 2009, with very high values in the comparison class to class. The development of this model directly contributed to the optimization of the production of processed data contributing greatly to the acceleration of the interpretation of the images analyzed, as well as to minimize errors caused by the subjectivity linked to the classifier itself.

Page generated in 0.1167 seconds