Return to search

Analytical methods and field theory for disordered systems / Méthodes analytiques et théorie des champs pour les systèmes désordonnés

Cette thèse présente plusieurs aspects de la physique des systèmes élastiques désordonnés et des méthodes analytiques utilisées pour les étudier. On s’intéressera d’une part aux propriétés universelles des processus d’avalanches statiques et dynamiques (à la transition de dépiégeage) d’interfaces élastiques de dimension arbitraire en milieu aléatoire à température nulle. Pour étudier ces questions nous utiliserons le groupe de renormalisation fonctionnel. Après une revue de ces aspects,nous présenterons plus particulièrement les résultats obtenus pendant la thèse sur (i) la structure spatiale des avalanches et (ii) les corrélations entre avalanches.On s’intéressera d’autre part aux propriétés statiques à température finie de polymères dirigés en dimension 1+1, et en particulier aux observables liées à la classe d’universalité KPZ. Dans ce contexte l’étude de modèles exactement solubles a récemment permis de grands progrès. Après une revue de ces aspects, nous nous intéresserons plus particulièrement aux modèles exactement solubles de polymère dirigé sur le réseau carré, et présenterons les résultats obtenus pendantla thèse dans cette voie: (i) classification des modèles à température finie sur le réseau carré exactement solubles par ansatz de Bethe; (ii) universalité KPZ pour les modèles Log-Gamma et Inverse-Beta; (iii) universalité et nonuniversalitéKPZ pour le modèle Beta; (iv) mesures stationnaires du modèle Inverse-Beta et des modèles à température nulle associés. / This thesis presents several aspects of the physics of disordered elastic systems and of the analytical methods used for their study.On one hand we will be interested in universal properties of avalanche processes in the statics and dynamics (at the depinning transition) of elastic interfaces of arbitrary dimension in disordered media at zero temperature. To study these questions we will use the functional renormalization group. After a review of these aspects we will more particularly present the results obtained during the thesis on (i) the spatial structure of avalanches and (ii) the correlations between avalanches.On the other hand we will be interested in static properties of directed polymers in 1+1 dimension, and in particular in observables related to the KPZ universality class. In this context the study of exactly solvable models has recently led to important progress. After a review of these aspects we will be more particularly interested in exactly solvable models of directed polymer on the square lattice and present the results obtained during the thesis in this direction: (i) classification ofBethe ansatz exactly solvable models of directed polymer at finite temperature on the square lattice; (ii) KPZ universality for the Log-Gamma and Inverse-Beta models; (iii) KPZ universality and non-universality for the Beta model; (iv) stationary measures of the Inverse- Beta model and of related zero temperature models.

Identiferoai:union.ndltd.org:theses.fr/2016PSLEE017
Date05 September 2016
CreatorsThiery, Thimothée
ContributorsParis Sciences et Lettres, Le Doussal, Pierre, Wiese, Kay Jörg
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds