• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum confinement in low-dimensional Dirac materials

Downing, Charles Andrew January 2015 (has links)
This thesis is devoted to quantum confinement effects in low-dimensional Dirac materials. We propose a variety of schemes in which massless Dirac fermions, which are notoriously diffcult to manipulate, can be trapped in a bound state. Primarily we appeal for the use of external electromagnetic fields. As a consequence of this endeavor, we find several interesting condensed matter analogues to effects from relativistic quantum mechanics, as well as entirely new effects and a possible novel state of matter. For example, in our study of the effective Coulomb interaction in one dimension, we demonstrate how atomic collapse may arise in carbon nanotubes or graphene nanoribbons, and describe the critical importance of the size of the band gap. Meanwhile, inspired by groundbreaking experiments investigating the effects of strain, we propose how to confine the elusive charge carriers in so-called velocity barriers, which arise due to a spatially inhomogeneous Fermi velocity triggered by a strained lattice. We also present a new and beautiful quasi-exactly solvable model of quantum mechanics, showing the possibilities for confinement in magnetic quantum dots are not as stringent as previously thought. We also reveal that Klein tunnelling is not as pernicious as widely believed, as we show bound states can arise from purely electrostatic means at the Dirac point energy. Finally, we show from an analytical solution to the quasi-relativistic two-body problem, how an exotic same-particle paring can occur and speculate on its implications if found in the laboratory.
2

Generalizations of the Landau-Zener theory in the physics of nanoscale systems

Sinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
3

Generalizations of the Landau-Zener theory in the physics of nanoscale systems

Sinitsyn, Nikolai 30 September 2004 (has links)
Nanoscale systems have sizes intermediate between atomic and macroscopic ones. Therefore their treatment often requires a combination of methods from atomic and condensed matter physics. The conventional Landau-Zener theory, being a powerful tool in atomic physics, often fails to predict correctly nonadiabatic transition probabilities in various nanostructures because it does not include many-body effects typical for mesoscopics. In this research project the generalizations of the Landau-Zener theory that solve this problem were studied. The multistate, multiparticle and nonunitary extensions of the theory have been proposed and investigated. New classes of exactly solvable models have been derived. I discuss their applications in problems of the molecular condensate dissociation and of the driven charge transport. In application to the physics of nanomagnets new approaches in modeling the influence of the environment on the Landau-Zener evolution are proposed and simple universal formulas are derived for the extensions of the theory that include the coupling to noise and the nuclear spin bath.
4

Fermions in two dimensions and exactly solvable models

de Woul, Jonas January 2011 (has links)
This Ph.D. thesis in mathematical physics concerns systems of interacting fermions with strong correlations. For these systems the physical properties can only be described in terms of the collective behavior of the fermions. Moreover, they are often characterized by a close competition between fermion localization versus delocalization, which can result in complex and exotic physical phenomena. Strongly correlated fermion systems are usually modelled by many-body Hamiltonians for which the kinetic- and interaction energy have the same order of magnitude. This makes them challenging to study as the application of conventional computational methods, like mean field- or perturbation theory, often gives unreliable results. Of particular interest are Hubbard-type models, which provide minimal descriptions of strongly correlated fermions. The research of this thesis focuses on such models defined on two-dimensional square lattices. One motivation for this is the so-called high-Tc problem of the cuprate superconductors. A main hypothesis is that there exists an underlying Fermi surface with nearly flat parts, i.e. regions where the surface is straight. It is shown that a particular continuum limit of the lattice system leads to an effective model amenable to computations. This limit is partial in that it only involves fermion degrees of freedom near the flat parts. The result is an effective quantum field theory that is analyzed using constructive bosonization methods. Various exactly solvable models of interacting fermions in two spatial dimensions are also derived and studied. / QC 20111207
5

Geometric Method for Solvable Lattice Spin Systems / 可解格子スピン系に対する幾何学的手法

Ogura, Masahiro 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24398号 / 理博第4897号 / 新制||理||1700(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐藤 昌利, 教授 佐々 真一, 准教授 戸塚 圭介 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
6

Stochastická dynamika a energetika biomolekulárních systémů / Stochastic dynamics and energetics of biomolecular systems

Ryabov, Artem January 2014 (has links)
Title: Stochastic dynamics and energetics of biomolecular systems Author: Artem Ryabov Department: Department of Macromolecular Physics Supervisor: prof. RNDr. Petr Chvosta, CSc., Department of Macromolecular Physics Abstract: The thesis comprises exactly solvable models from non-equilibrium statistical physics. First, we focus on a single-file diffusion, the diffusion of particles in narrow channel where particles cannot pass each other. After a brief review, we discuss open single-file systems with absorbing boundaries. Emphasis is put on an interplay of absorption process at the boundaries and inter-particle entropic repulsion and how these two aspects affect the dynam- ics of a given tagged particle. A starting point of the discussions is the exact distribution for the particle displacement derived by order-statistics argu- ments. The second part of the thesis is devoted to stochastic thermodynam- ics. In particular, we present an exactly solvable model, which describes a Brownian particle diffusing in a time-dependent anharmonic potential. The potential has a harmonic component with a time-dependent force constant and a time-independent repulsive logarithmic barrier at the origin. For a particular choice of the driving protocol, the exact work characteristic func- tion is obtained. An asymptotic analysis of...
7

Analytical methods and field theory for disordered systems / Méthodes analytiques et théorie des champs pour les systèmes désordonnés

Thiery, Thimothée 05 September 2016 (has links)
Cette thèse présente plusieurs aspects de la physique des systèmes élastiques désordonnés et des méthodes analytiques utilisées pour les étudier. On s’intéressera d’une part aux propriétés universelles des processus d’avalanches statiques et dynamiques (à la transition de dépiégeage) d’interfaces élastiques de dimension arbitraire en milieu aléatoire à température nulle. Pour étudier ces questions nous utiliserons le groupe de renormalisation fonctionnel. Après une revue de ces aspects,nous présenterons plus particulièrement les résultats obtenus pendant la thèse sur (i) la structure spatiale des avalanches et (ii) les corrélations entre avalanches.On s’intéressera d’autre part aux propriétés statiques à température finie de polymères dirigés en dimension 1+1, et en particulier aux observables liées à la classe d’universalité KPZ. Dans ce contexte l’étude de modèles exactement solubles a récemment permis de grands progrès. Après une revue de ces aspects, nous nous intéresserons plus particulièrement aux modèles exactement solubles de polymère dirigé sur le réseau carré, et présenterons les résultats obtenus pendantla thèse dans cette voie: (i) classification des modèles à température finie sur le réseau carré exactement solubles par ansatz de Bethe; (ii) universalité KPZ pour les modèles Log-Gamma et Inverse-Beta; (iii) universalité et nonuniversalitéKPZ pour le modèle Beta; (iv) mesures stationnaires du modèle Inverse-Beta et des modèles à température nulle associés. / This thesis presents several aspects of the physics of disordered elastic systems and of the analytical methods used for their study.On one hand we will be interested in universal properties of avalanche processes in the statics and dynamics (at the depinning transition) of elastic interfaces of arbitrary dimension in disordered media at zero temperature. To study these questions we will use the functional renormalization group. After a review of these aspects we will more particularly present the results obtained during the thesis on (i) the spatial structure of avalanches and (ii) the correlations between avalanches.On the other hand we will be interested in static properties of directed polymers in 1+1 dimension, and in particular in observables related to the KPZ universality class. In this context the study of exactly solvable models has recently led to important progress. After a review of these aspects we will be more particularly interested in exactly solvable models of directed polymer on the square lattice and present the results obtained during the thesis in this direction: (i) classification ofBethe ansatz exactly solvable models of directed polymer at finite temperature on the square lattice; (ii) KPZ universality for the Log-Gamma and Inverse-Beta models; (iii) KPZ universality and non-universality for the Beta model; (iv) stationary measures of the Inverse- Beta model and of related zero temperature models.
8

Polynômes orthogonaux : processus limites et modèles exactement résolubles

Lemay, Jean-Michel 06 1900 (has links)
Cette thèse porte sur l’étude des familles de polynômes orthogonaux et leurs liens avec les modèles exactement résolubles. Elle se décline en deux parties. Dans la première, on caractérise quatre nouvelles familles de polynômes orthogonaux à l’aide de processus limites appliqués à des familles appartenant aux schéma d’Askey et de Bannai-Ito. Des troncations singulières des polynômes de Wilson et d’Askey-Wilson sont considérées. Deux premières extensions bivariées de polynômes appartenant au tableau de Bannai-Ito sont également introduites. La deuxième partie présente quatre modèles exactement résolubles en lien avec la théorie des polynômes orthogonaux. Les propriétés de transfert parfait d’information quantique et de partage d’intrication d’un modèle de chaîne de spin XX dont les couplage sont liés aux polynômes de para-Racah sont examinées. Deux modèles superintégrables contenant des opérateurs de réflexions sont proposés. Leurs solutions sont obtenues et leurs symétries s’encodent respectivement dans l’algèbre de Bannai-Ito de rang deux et de rang arbitraire ce qui mène à conjecturer l’apparition des polynômes de Bannai-Ito multivariés comme coefficients de connection. Finalement, par la théorie des représentations de la superalgèbre osp(1|2), deux identités de convolution pour des familles de polynômes du tableau de Bannai-Ito sont offertes. Une réalisation en termes d’opérateurs de Dunkl conduit à une fonction génératrice bilinéaire pour les polynômes de Big −1 Jacobi. / This thesis is concerned with the study of families of orthogonal polynomials and their connection to exactly solvable models. It comprises two parts. In the first one, four novel families of orthogonal polynomials are caracterized through limit processes applied to families belonging to the Askey and Bannai-Ito schemes. Singular truncations of the Wilson and Askey-Wilson polynomials are considered. The first two bivariate extensions of families of the Bannai-Ito tableau are also introduced. The second part presents four exactly solvable models connected to the theory of orthogonal polynomials. The perfect transfer of quantum information and entanglement generation properties of an XX spin chain model whose couplings are linked to the para-Racah polynomials are examined. Two superintegrable models containing reflexion operators are proposed. Their solutions are obtained and their symmetries are encoded respectively in the rank two and arbitrary rank Bannai-Ito algebra which leads to conjecture the apparition of multivariate Bannai-Ito polynomials as overlaps. Finally, via the representation theory of the osp(1|2) Lie superalgebra, two convolution identities for families of orthogonal polynomials of the Bannai-Ito tableau are offered. Realizations in terms of Dunkl operators lead to a bilinear generating function for the Big −1 Jacobi polynomials.

Page generated in 0.0901 seconds