O módulo de resiliência é uma propriedade mecânica dos solos indispensável para análise estrutural de pavimentos em termos de tensão e deformação. O principal ensaio laboratorial para estimativa do módulo de resiliência dos solos é o ensaio triaxial cíclico no qual existe um maior controle das condições da amostra, dos carregamentos aplicados e dos deslocamentos medidos. A utilização de relações para obtenção do módulo de resiliência a partir de propriedades do solo obtidas de ensaios mais simples e rotineiros é permitida pelo procedimento NCHRP 1-37A (2004) e pode ser muito útil para fase de anteprojeto de implantação de rodovias, pois permite uma avaliação rápida do módulo de resiliência dos solos de jazidas e subleitos, localizados ao longo das diversas alternativas de traçados a serem analisadas. No entanto, as relações existentes ou são restritivas, por não considerarem os solos das regiões tropicais de comportamento laterítico e não laterítico da classificação MCT (Miniatura Compactado Tropical), ou são de baixa eficiência. Considerando-se o sucesso que as redes neurais artificiais (RNAs) têm apresentado no campo da engenharia em estabelecer relações entre variáveis explicativas e variáveis resposta, neste trabalho foram desenvolvidas RNAs para relacionar o módulo de resiliência com as propriedades do solo, tanto para solos grossos compactados na energia modificada como para solos compactados na energia normal. O banco de dados utilizado no trabalho baseou-se nos resultados de ensaios de setenta e seis amostras de solos coletadas no interior do Estado de São Paulo. Finalmente, verificou-se que as RNAs podem prever, com alta eficiência, o módulo de resiliência dos solos tropicais de comportamento laterítico e não laterítico a partir de propriedades do solo tais como: composição granulométrica, LL, IP, umidade ótima e resultados do ensaio de compressão simples. / The resilient modulus is an essential mechanical property for stress-strain analysis of pavements. The main test to evaluate resilient modulus of soils is cyclic triaxial test which there is a better control not only of samples but also of loads and displacements. Nowadays, the utilization of relationships to obtain resilient modulus from soils properties, from routine simple tests, is allowed by procedure NCHRP 1-37A, and that can be useful in initial design in construction of roads, as the resilient modulus of material pits and subgrades, places along several alternative traces of design, can be evaluated very fast by relationships. However, the existing relationships are restrictive, because they do not consider tropical soils of lateritic and non-lateritic behavior from MCT (Miniatura Compactado Tropical) classification and they have low performance. Artificial neural networks (ANNs) have shown high success to establish relationships from answering variables and explicative variables, so in this work was developed ANNs to establish relationships from resilient modulus and soil properties, not only for sandy soils in Proctor\'s modified compaction energy but also for soils in Proctor\'s standard compaction energy. The data base used in this work was laboratory test results from seventy-six soils which were collected in interior of Sao Paulo state. Finally, for tropical soils of lateritic and non-lateritic behavior, it was verified that ANNs can forecast, with high performance, resilient modulus from soil properties just as: grain size composition, liquid limit (LL), plasticity index (PI), optimum moisture content and results of simple strength compressive test.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07042008-111017 |
Date | 07 December 2007 |
Creators | Viana, Helio Marcos Fernandes |
Contributors | Parreira, Alexandre Benetti |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds