Cette thèse concerne l'étude des graphes quantiques, c'est à dire, des systèmes quantiques dans lesquels une particule non relativiste est confinée sur un graphe. Nous proposons une nouvelle voie pour représenter des conditions aux limites, et à l'aide de ce résultat nous résolvons le problème, resté longtemps ouvert, d'approximation par des graphes réguliers de tous les couplages singuliers aux sommets dans un graphe quantique. Nous présentons une construction dans laquelle les arêtes sont disjointes et les paires d'extrémités ainsi obtenues sont raccordés par des arêtes additionnelles de longueur 2d. Chacune de ces arêtes porte un potentiel delta et un potentiel vectoriel . Nous montrons que lorsque d tend vers zéro et les potentiels dépendent convenablement de d, la limite peut produire tout couplage singulier de sommets requis. Ce type de conditions aux limites est utilisé pour examiner les propriétés de diffusion par des sommets singuliers de degré 3. Nous montrons que les couplages entre chaque paire de lignes issues du sommet sont réglables individuellement ce qui pourrait permettre la conception de filtre quantique de type "aiguillage spectral". Nous étudions aussi les opérateurs de Schrödinger sur un graphe infini en forme de chaîne composée de cercles identiques couplés aux points de contact par les interactions. delta Si le graphe est périodique, l'hamiltonien a un spectre de bande. Nous considérons une déformation "courbée" de la chaîne qui consiste en un changement de la position du point de contact entre deux cercles. On montre que cette déformation a pour conséquence la naissance de valeurs propres et analyse leur dépendance par rapport à l"angle de courbature".
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00527790 |
Date | 11 December 2009 |
Creators | Turek, Ondrej |
Publisher | Université du Sud Toulon Var |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds