Les micro-résonateurs optiques comptent parmi les dispositifs les plus importants en photonique. Les résonateurs WGM sont assez particuliers. Il s'agit de composant présentant une symétrie circulaire comme c'est le cas des sphères, des anneaux, des disques et des tores. Les résonateurs WGM présentent un facteur de qualité exceptionnel et un volume modal très faible. Ces appareils peuvent être utilisés dans plusieurs domaines, notamment la télédétection, le filtrage optique et l'optique non linéaire. D'autres applications sont possibles en biologie, médecine, spectroscopie moléculaire, surveillance environnementale, astronomie et astrophysique grâce à l'exploitation du rayonnement moyen infrarouge. Les micro-résonateurs optiques comportent un grand nombre de transitions vibrationnelles qui agissent comme des «empreintes» pour de nombreuses molécules organiques permettant le développement d'applications spectroscopiques innovantes et de nouveaux capteurs. Il convient de noter que l'atmosphère de la terre est transparente au niveau des deux fenêtres de transmission atmosphérique. La première est comprise entre 3 et 5 μm et la seconde entre 8 et 13 μm, ce qui rend possible des applications telles que la détection d'explosifs à distance ainsi que le brouillage de communication confidentielles. La large fenêtre de transparence en verres de chalcogénures dans le domaine spectral infrarouge rend envisageable le développement de nombreuses applications. Les verres de chalcogénure sont caractérisés par une bonne résistance mécanique et une durabilité chimique suffisante dans l'eau et l'atmosphère. Par ailleurs, l'indice de réfraction élevé, le rendement quantique élevé, l'énergie de phonon faible et la solubilité importante des terres rares permettent des émissions dans le domaine spectral du moyen IR. Dans cette thèse, la conception de dispositifs innovants en chalcogénure pour des applications utilisant le moyen infrarouge est étudiée en utilisant un code d'ordinateur personnel formé de façon aléatoire. Les appareils reposent sur des trois types de micro-résonateurs : les microsphères, les micro-disques et les microbulles. Les résonateurs WGM sont efficacement excités à l'aide de fibres nervurées et de guides d'ondes optiques de forme conique. Le nouveau procédé de conception est développé en utilisant la méthode d'optimisation par essaims particulaires (PSO). Elle permet de maximiser le gain d'un amplificateur reposant sur une microsphère d'émission laser dopée à l'erbium à 4,5 μm. Une technique innovante permettant de caractériser les propriétés spectroscopiques de la terre rare intégrant la recherche électromagnétique en mode WGM grâce à l'algorithme PSO a été développée. Les valeurs récupérées sont entachées d’une erreur inférieure à celle prévue par les instruments de mesure ayant un coût élevé. Des applications intéressantes peuvent être obtenues en excitant le micro-résonateur avec une fibre conique présentant deux LPG identiques sur les côtés. En effet, les FLP peuvent sélectionner le couplage de modes de fibre avec le résonateur WGM. En utilisant différentes paires de FLP identiques, opérant dans différentes bandes de longueurs d'onde, il est possible de coupler de façon sélective différents résonateurs à l'aide de la même fibre optique. Un code informatique aléatoire a été développé et validé. Il a démontré la faisabilité d'un capteur de microbulles de glucose. Un microdisque en terre rare dopé est étudié pour obtenir une source de lumière compacte et économique dans l'infrarouge moyen. Un code informatique est développé afin de simuler un micro-disque de terre rare dopé et associé à deux guides d'ondes nervurés, un pour le signal et l'autre pour la pompe. Le modèle est validé à l'aide d'un micro-disque dopée à l'erbium émettant à 4,5 μm. Ce dispositif très prometteur pour des applications dans le moyen infrarouge est obtenu en utilisant un micro-disque de praséodyme dopé émettant à 4,7 μm. / Optical micro-resonators represent one of the most important devices in photonics. A special kind is constituted by the WGM resonators, i.e. devices with circular symmetry such as spheres, rings, disks and toroids. They are characterized by very small dimensions, exceptionally quality factor and very low modal volume becoming a valuable alternative to the traditional optical micro-resonators, such as Fabry-Pérot cavities. These devices allow applications in several fields, such as sensing, optical filtering and nonlinear optics. In particular, different applications in biology and medicine, molecular spectroscopy, environmental monitoring, astronomy and astrophysics are feasible in Mid-Infrared wavelength range. For example, it includes a lot of strong vibrational transitions that act as “fingerprints” of many bio-molecules and organic species allowing the develop of innovative spectroscopic applications and novel sensors. In addition, the earth's atmosphere is transparent in two atmospheric transmission windows at 3–5 μm and 8–13 μm and then applications such as remote explosive detection, e.g. in airports and for border control, and covert communication systems are feasible. The wide transparency window of chalcogenide glasses in Mid-Infrared makes possible the development of several devices. Chalcogenide glasses are characterized by good mechanical strength and chemically durability in water and atmosphere. Furthermore, the high refractive index, high quantum efficiency, the low phonon energy and high rare-earth solubility enables the emissions at long wavelengths.In this thesis, the design of innovative chalcogenide devices for applications in Mid-Infrared is investigated using an ad-hoc home-made computer code. The devices are based on three kinds of micro-resonators: microspheres, micro-disks and microbubbles. The WGM resonators are efficiently excited by using tapered fiber and ridge waveguides. A novel design procedure is developed using the particle swarm optimization approach (PSO). It allows to maximize the gain of an amplifier based on an erbium-doped microsphere lasing at 2.7 μm.An innovative technique in order to characterize the spectroscopic properties of rare-earth is developed integrating the WGM electromagnetic investigation with PSO algorithm. The method is based on two subsequent steps: in the first one, the geometrical parameters are recovered, in the second one, the spectroscopic parameters. The recovered values are affected by an error less than that provided by high-cost measurement instruments. Furthermore, the procedure is very versatile and could be applied to develop innovative sensing systems.Interesting applications could be obtained exciting the micro-resonator by a tapered fiber with two identical LPGs on the sides. Indeed the LPGs can select the fiber modes coupling with the WGM resonator. Using different pairs of identical LPGs operating in different wavelength bands, it is possible to selective couple different micro-resonators by using the same optical fiber. An ad-hoc computer code is developed and validated and it demonstrated the feasibility of a microbubble glucose sensor.In order to obtain a compact and cost-saving light source in Mid-Infrared, rare-earth doped micro-disk are investigated. A computer code is developed in order to simulate a rare-earth doped micro-disk coupled to two ridge waveguide, one at signal wavelength and the other one at pump wavelength. The model is validated using an erbium-doped micro-disk emitting at 4.5 μm. A very promising device for application in Mid-Infrared is obtained using a praseodymium-doped micro-disk emitting at 4.7 μm.
Identifer | oai:union.ndltd.org:theses.fr/2017REN1S017 |
Date | 20 April 2017 |
Creators | Palma, Giuseppe |
Contributors | Rennes 1, Politecnico di Bari. Dipartimento di Ingegneria Elettrica e dell'Informazione (Italia), Nazabal, Virginie, Prudenzano, Francesco |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1583 seconds