Return to search

Topic classification of Monetary Policy Minutes from the Swedish Central Bank / Ämnesklassificering av Riksbankens penningpolitiska mötesprotokoll

Over the last couple of years, Machine Learning has seen a very high increase in usage. Many previously manual tasks are becoming automated and it stands to reason that this development will continue in an incredible pace. This paper builds on the work in Topic Classification and attempts to provide a baseline on how to analyse the Swedish Central Bank Minutes and gather information using both Latent Dirichlet Allocation and a simple Neural Networks. Topic Classification is done on Monetary Policy Minutes from 2004 to 2018 to find how the distributions of topics change over time. The results are compared to empirical evidence that would confirm trends. Finally a business perspective of the work is analysed to reveal what the benefits of implementing this type of technique could be. The results of these methods are compared and they differ. Specifically the Neural Network shows larger changes in topic distributions than the Latent Dirichlet Allocation. The neural network also proved to yield more trends that correlated with other observations such as the start of bond purchasing by the Swedish Central Bank. Thus, our results indicate that a Neural Network would perform better than the Latent Dirichlet Allocation when analyzing Swedish Monetary Policy Minutes. / Under de senaste åren har artificiell intelligens och maskininlärning fått mycket uppmärksamhet och växt otroligt. Tidigare manuella arbeten blir nu automatiserade och mycket tyder på att utvecklingen kommer att fortsätta i en hög takt. Detta arbete bygger vidare på arbeten inom topic modeling (ämnesklassifikation) och applicera detta i ett tidigare outforskat område, riksbanksprotokoll. Latent Dirichlet Allocation och Neural Network används för att undersöka huruvida fördelningen av diskussionspunkter (topics) förändras över tid. Slutligen presenteras en teoretisk diskussion av det potentiella affärsvärdet i att implementera en liknande metod. Resultaten för de olika modellerna uppvisar stora skillnader över tid. Medan Latent Dirichlet Allocation inte finner några större trender i diskussionspunkter visar Neural Network på större förändringar över tid. De senare stämmer dessutom väl överens med andra observationer såsom påbörjandet av obligationsköp. Därav indikerar resultaten att Neural Network är en mer lämplig metod för analys av riksbankens mötesprotokoll.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-240403
Date January 2018
CreatorsCedervall, Andreas, Jansson, Daniel
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2018:439

Page generated in 0.0024 seconds