Dans le contexte du développement d'une agriculture durable visant à préserver les ressources naturelles et les écosystèmes, il s'avère nécessaire d'approfondir notre compréhension des processus souterrains et des interactions entre le sol et les racines des plantes.Dans cette thèse, on utilise des outils mathématiques et numériques pour développer des modèles mécanistiques explicites du mouvement de l'eau et des nutriments dans le sol et de l'absorption racinaire, gouvernés par des équations aux dérivées partielles non linéaires. Un accent est mis sur la prise en compte explicite de la géométrie du système racinaire et des processus à petite échelle survenant dans la rhizosphère, qui jouent un rôle majeur dans l'absorption racinaire.La première étude est dédiée à l'analyse mathématique d'un modèle d'absorption du phosphore (P) par les racines des plantes. L'évolution de la concentration de P dans la solution du sol est gouvernée par une équation de convection-diffusion avec une condition aux limites non linéaire à la surface de la racine, que l'on considère ici comme un bord du domaine du sol. On formule ensuite un problème d'optimisation de forme visant à trouver les formes racinaires qui maximisent l'absorption de P.La seconde partie de cette thèse montre comment on peut tirer avantage des récents progrès du calcul scientifique dans le domaine de l'adaptation de maillage non structuré et du calcul parallèle afin de développer des modèles numériques du mouvement de l'eau et des solutés et de l'absorption racinaire à l'échelle de la plante, tout en prenant en compte les phénomènes locaux survenant à l'échelle de la racine unique. / In the context of the development of sustainable agriculture aiming at preserving natural resources and ecosystems, it is necessary to improve our understanding of underground processes and interactions between soil and plant roots.In this thesis, we use mathematical and numerical tools to develop explicit mechanistic models of soil water and solute movement accounting for root water and nutrient uptake and governed by nonlinear partial differential equations. An emphasis is put on resolving the geometry of the root system as well as small scale processes occurring in the rhizosphere, which play a major role in plant root uptake.The first study is dedicated to the mathematical analysis of a model of phosphorus (P) uptake by plant roots. The evolution of the concentration of P in the soil solution is governed by a convection-diffusion equation with a nonlinear boundary condition at the root surface, which is included as a boundary of the soil domain. A shape optimization problem is formulated that aims at finding root shapes maximizing P uptake.The second part of this thesis shows how we can take advantage of the recent advances of scientific computing in the field of unstructured mesh adaptation and parallel computing to develop numerical models of soil water and solute movement with root water and nutrient uptake at the plant scale while taking into account local processes at the single root scale.
Identifer | oai:union.ndltd.org:theses.fr/2015PA066030 |
Date | 04 February 2015 |
Creators | Tournier, Pierre-Henri |
Contributors | Paris 6, Comte, Myriam, Hecht, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds