Return to search

Experimental Study of Turbulent Flow over Inclined Ribs in Adverse Pressure Gradient

This thesis is an experimental study of turbulent flows over smooth and rough walls in a channel that consists of an upstream parallel section to produce a fully developed channel flow and a diverging section to produce an adverse pressure gradient (APG) flow. The roughness elements used were two-dimensional square ribs of nominal height k = 3 mm. The ribs were secured to the lower wall of the channel and spaced to produce the following three pitches: 2k, 4k and 8k, corresponding to d-type, intermediate and k-type rough walls, respectively. For each rough wall type, the ribs were inclined at 90°, 45° and 30° to the approach flow. The velocity measurements were performed using a particle image velocimetry technique.
The results showed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. The level of turbulence production and Reynolds stresses were significantly increased by roughness beyond the roughness sublayer. It was observed that the population, sizes and the level of organization of hairpin vortices varied with roughness and more intense quadrant events were found over the smooth wall than the rough walls.
APG reinforced wall roughness in augmenting the equivalent sand grain roughness height, turbulence production and Reynolds stresses. APG also reduced the sizes of the hairpin packets but strengthened the quadrant events in comparison to the results obtained in the parallel section.
The secondary flow induced by inclined ribs significantly altered the distributions of the flow characteristics across the span of the channel. Generally, the mean flow was less uniform close to the trailing edge of the ribs compared to the flows at the mid-span and close to the leading edge of the ribs. The Reynolds stresses and hairpin packets were distinctly larger close to the trailing edge of the ribs. Rib inclination also decreased the drag characteristics and significantly modified the distributions of the Reynolds stresses and quadrant events. In the parallel section, the physical sizes of the hairpin packets were larger over 45° ribs whereas in the diverging section, the sizes were larger over perpendicular ribs.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/14164
Date20 December 2012
CreatorsTsikata, Jonathan Mawuli
ContributorsTachie, Mark F. (Mechanical and Manufacturing Engineering), Wang, Bing-Chen (Mechanical and Manufacturing Engineering) Chen, Ying (Biosystems Engineering) Castillo, Luciano (Texas Tech University, USA)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageEnglish

Page generated in 0.0017 seconds