Nous considérons le problème de l'estimation d'une fonction inconnue en un point fixe à l'aide de données régies par des modèles de régression ou de diffusion. Pour définir le risque associé à l'emploi d'un estimateur et ainsi mesurer la qualité de celui-ci, nous utilisons la fonction de perte liée à l'erreur absolue. Le travail de cette thèse suit l'approche minimax dont l'objectif est de trouver une borne inférieure asymptotique du risque minimax puis de construire un estimateur, dit asymptotiquement efficace, dont le risque maximal atteint asymptotiquement cette borne.<br />Pour un modèle de régression non paramétrique et hétéroscédastique, où l'écart-type du bruit dépend à la fois du régresseur et de la fonction de régression supposée appartenir à une classe höldérienne faible de régularité connue, nous montrons qu'un estimateur à noyau est asymptotiquement efficace. Lorsque la régularité de la fonction de régression est inconnue, nous obtenons la vitesse de convergence minimax adaptative des estimateurs sur une famille de classes höldériennes. Enfin, pour un modèle de diffusion où la dérive appartient à un voisinage höldérien faible centré en une fonction lipschitzienne, nous présentons la construction d'un estimateur à noyau asymptotiquement efficace.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00338286 |
Date | 17 November 2008 |
Creators | Brua, Jean-Yves |
Publisher | Université Louis Pasteur - Strasbourg I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds