• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation paramétrique d'une diffusion ergodique observée à temps discret

Souchet, Sandie 13 January 1999 (has links) (PDF)
Cette thèse comporte cinq chapitres.<br /><br />Chapitre 1 : Schémas de discrétisation anticipatifs et estimation du paramètre de dérive d'une diffusion. <br />Pour estimer le paramètre de dérive d'une diffusion unidimensionnelle ergodique observée à pas d>0 et fixé, on construit des contrastes basés sur des schémas d'approximation anticipatifs (schéma du trapèze et de Simpson) couplés à la méthode d'estimation des moments généralisés. Les estimateurs obtenus présentent des biais d'estimation en d**2 pour le schéma du trapèze et en d**4 pour le schéma de Simpson. L'efficacité asymptotique est par ailleurs préservée à un facteur (1+O(d)) près.<br /><br />Chapitre 2 : Schéma d'approximation adapté à l'ordre p et estimation de la dérive d'une diffusion.<br />Pour estimer le paramètre de dérive d'une diffusion ergodique observée à pas d, nous approximons la vraisemblance exacte de l'échantillon par celle d'un processus gaussien dont l'espérance conditionnelle est approchée à l'ordre d**p. L'estimateur obtenu est asymptotiquement biaisé. Ce biais est explicite et est de l'ordre de d**p. L'efficacité asymptotique est par ailleurs préservée à un facteur près. <br /><br />Chapitre 3 : Estimation du paramètre de dérive d'une diffusion sous des conditions d'irrégularité de la dérive.<br />Le problème étudié est l'analogue de celui étudié par Chan pour les AR à seuil (Threshold, Ann. Stat. 1993). Ici, le temps n'est plus discret mais continu. La dérive de la diffusion est continue, mais à dérivées discontinues en un seuil r. Le problème étudié est celui de l'estimation de ce seuil r. Si le pas d'observation d_n tend vers 0 et si T=n*d_n tend vers l'infini, l'estimateur des Moindres carrés (associé au schéma d'Euler ) de r est consistant. Si de plus n*(d_n)**3 tend vers 0, il y a normalité asymptotique à une vitesse standard. <br /><br />Chapitre 4 : Estimation d'un CAR(p) incomplètement observé à partir des équations de Yule-Walker.<br />Un travail de Hyndman (JTSA, 93) présente les équations de Yule-Walker pour un CAR(p), X, (qui est aussi une diffusion p-dimensionnelle, Y=(X, X(1),...,X(p-1))) et l'estimation des paramètres déduite sur la base de ces équations et de l'observation complète de Y (temps continu et observation des p-composantes de Y). Adoptant une méthodologie identique, nous étudions ce problème d'estimation lorsque l'on ne dispose que de l'observation de X, la première composante de Y, et ceci à des instants discrets (au pas d). Nous proposons <br />un estimateur convergent des paramètres à un biais près de l'ordre de d.<br /><br />Chapitre 5 : Precision of systematic sampling and transitive methods.<br />Nous proposons une méthode d'estimation dérivée des méthodes transitives utilisées notamment dans le domaine de la stéréologie. Cette méthode permet d'estimer l'écart quadratique moyen d'estimateurs empiriques construits à partir d'un échantillonnage systématique.
2

Problèmes Statistiques pour les EDS et les EDS Rétrogrades / Statistical problems for SDEs and for backward SDEs

Zhou, Li 28 March 2013 (has links)
Nous considérons deux problèmes. Le premier est la construction des tests d’ajustement (goodness-of-fit) pour les modèles de processus de diffusion ergodique. Nous considérons d’abord le cas où le processus sous l’hypothèse nulle appartient à une famille paramétrique. Nous étudions les tests de type Cramer-von Mises et Kolmogorov- Smirnov. Le paramètre inconnu est estimé par l’estimateur de maximum de vraisemblance ou l’estimateur de distance minimale. Nous construisons alors les tests basés sur l’estimateur du temps local de la densité invariante, et sur la fonction de répartition empirique. Nous montrons alors que les statistiques de ces deux types de test convergent tous vers des limites qui ne dépendent pas du paramètre inconnu. Par conséquent, ces tests sont appelés asymptotically parameter free. Ensuite, nous considérons l’hypothèse simple. Nous étudions donc le test du khi-deux. Nous montrons que la limite de la statistique ne dépend pas de la dérive, ainsi on dit que le test est asymptotically distribution free. Par ailleurs, nous étudions également la puissance du test du khi-deux. En outre, ces tests sont consistants. Nous traitons ensuite le deuxième problème : l’approximation des équations différentielles stochastiques rétrogrades. Supposons que l’on observe un processus de diffusion satisfaisant à une équation différentielle stochastique, où la dérive dépend du paramètre inconnu. Nous estimons premièrement le paramètre inconnu et après nous construisons un couple de processus tel que la valeur finale de l’un est une fonction de la valeur finale du processus de diffusion donné. Par la suite, nous montrons que, lorsque le coefficient de diffusion est petit, le couple de processus se rapproche de la solution d’une équations différentielles stochastiques rétrograde. A la fin, nous prouvons que cette approximation est asymptotiquement efficace. / We consider two problems in this work. The first one is the goodness of fit test for the model of ergodic diffusion process. We consider firstly the case where the process under the null hypothesis belongs to a given parametric family. We study the Cramer-von Mises type and the Kolmogorov-Smirnov type tests in different cases. The unknown parameter is estimated via the maximum likelihood estimator or the minimum distance estimator, then we construct the tests in using the local time estimator for the invariant density function, or the empirical distribution function. We show that both the Cramer-von Mises type and the Kolmogorov-Smirnov type statistics converge to some limits which do not depend on the unknown parameter, thus the tests are asymptotically parameter free. The alternatives as usual are nonparametric and we show the consistency of all these tests. Then we study the chi-square test. The basic hypothesis is now simple The chi-square test is asymptotically distribution free. Moreover, we study also power function of the chi-square test to compare with the others. The other problem is the approximation of the forward-backward stochastic differential equations. Suppose that we observe a diffusion process satisfying some stochastic differential equation, where the trend coefficient depends on some unknown parameter. We try to construct a couple of processes such that the final value of one is a function of the final value of the given diffusion process. We show that when the diffusion coefficient is small, the couple of processes approximates well the solution of a backward stochastic differential equation. Moreover, we present that this approximation is asymptotically efficient.
3

Estimation non paramétrique pour des modèles de diffusion et de régression

Brua, Jean-Yves 17 November 2008 (has links) (PDF)
Nous considérons le problème de l'estimation d'une fonction inconnue en un point fixe à l'aide de données régies par des modèles de régression ou de diffusion. Pour définir le risque associé à l'emploi d'un estimateur et ainsi mesurer la qualité de celui-ci, nous utilisons la fonction de perte liée à l'erreur absolue. Le travail de cette thèse suit l'approche minimax dont l'objectif est de trouver une borne inférieure asymptotique du risque minimax puis de construire un estimateur, dit asymptotiquement efficace, dont le risque maximal atteint asymptotiquement cette borne.<br />Pour un modèle de régression non paramétrique et hétéroscédastique, où l'écart-type du bruit dépend à la fois du régresseur et de la fonction de régression supposée appartenir à une classe höldérienne faible de régularité connue, nous montrons qu'un estimateur à noyau est asymptotiquement efficace. Lorsque la régularité de la fonction de régression est inconnue, nous obtenons la vitesse de convergence minimax adaptative des estimateurs sur une famille de classes höldériennes. Enfin, pour un modèle de diffusion où la dérive appartient à un voisinage höldérien faible centré en une fonction lipschitzienne, nous présentons la construction d'un estimateur à noyau asymptotiquement efficace.
4

Problèmes Statistiques pour les EDS et les EDS Rétrogrades

Zhou, Li 28 March 2013 (has links) (PDF)
Nous considérons deux problèmes. Le premier est la construction des tests d'ajustement (goodness-of-fit) pour les modèles de processus de diffusion ergodique. Nous considérons d'abord le cas où le processus sous l'hypothèse nulle appartient à une famille paramétrique. Nous étudions les tests de type Cramer-von Mises et Kolmogorov- Smirnov. Le paramètre inconnu est estimé par l'estimateur de maximum de vraisemblance ou l'estimateur de distance minimale. Nous construisons alors les tests basés sur l'estimateur du temps local de la densité invariante, et sur la fonction de répartition empirique. Nous montrons alors que les statistiques de ces deux types de test convergent tous vers des limites qui ne dépendent pas du paramètre inconnu. Par conséquent, ces tests sont appelés asymptotically parameter free. Ensuite, nous considérons l'hypothèse simple. Nous étudions donc le test du khi-deux. Nous montrons que la limite de la statistique ne dépend pas de la dérive, ainsi on dit que le test est asymptotically distribution free. Par ailleurs, nous étudions également la puissance du test du khi-deux. En outre, ces tests sont consistants. Nous traitons ensuite le deuxième problème : l'approximation des équations différentielles stochastiques rétrogrades. Supposons que l'on observe un processus de diffusion satisfaisant à une équation différentielle stochastique, où la dérive dépend du paramètre inconnu. Nous estimons premièrement le paramètre inconnu et après nous construisons un couple de processus tel que la valeur finale de l'un est une fonction de la valeur finale du processus de diffusion donné. Par la suite, nous montrons que, lorsque le coefficient de diffusion est petit, le couple de processus se rapproche de la solution d'une équations différentielles stochastiques rétrograde. A la fin, nous prouvons que cette approximation est asymptotiquement efficace.
5

Observations bruitées d'une diffusion. Estimation, filtrage, applications.

Favetto, Benjamin 30 September 2010 (has links) (PDF)
Les modèles aléatoires basés sur l'observation bruitée de diffusions discrétisées sont couramment utilisés en biologie ou en finance pour rendre compte de la présence d'erreur (ou bruit) entâchant la mesure d'un phénomène dont le comportement est dirigé par une équation différentielle stochastique. Deux questions statistiques sont liées à ces modèles : l'estimation d'un paramètre theta déterminant le comportement de la diffusion cachée, et le calcul du filtre optimal, ou d'une approximation. La première partie de cette thèse porte sur l'étude d'un modèle d'Ornstein-Uhlenbeck bidimensionnel partiellement observé et bruité, en lien avec l'estimation de paramètres de microvascularisation pour un modèle pharmacocinétique stochastique. Plusieurs résultats sur données médicales sont présentés. Dans la seconde partie, des estimateurs pour les paramètres de la diffusion cachée, sont obtenus dans un contexte de données haute fréquence, comme minima de fonctions de contraste ou comme zéros de fonctions d'estimation basées sur des moyennes locales d'observations bruitées. On montre en particulier la consistence et la normalité asymptotique de ces estimateurs. Enfin, la troisième partie étudie la tension de la suite des variances asymptotiques obtenues dans le théorème central limite associé à l'approximation particulaire du filtre et de la prédiction dans un modèle de Markov caché.
6

Inéquations variationnelles stochastiques et applications aux vibrations de structures mécaniques

Mertz, Laurent 02 December 2011 (has links) (PDF)
Cette thèse traite des inéquations variationnelles stochastiques et de leurs applications aux vibrations de structures mécaniques. On considère d'abord un algorithme numérique déterministe pour obtenir le régime stationnaire d'une inéquation variationnelle stochastique modélisant un oscillateur élasto-plastique excité par un bruit blanc. Une famille de solutions d'équations aux dérivées partielles définissant la mesure invariante par dualité est étudiée comme alternative à la simulation probabiliste. Puis, nous présentons une nouvelle caractérisation de l'unique mesure invariante. Dans ce contexte, nous montrons une relation liant des problèmes non-locaux et des problèmes locaux en introduisant la définition des cycles courts. Dans un cadre orienté vers les applications, nous démontrons que la variance de la déformation plastique cro^it linéairement avec le temps et nous caractérisons rigoureusement le coefficient de dérive en introduisant la définition des cycles longs. Dans la suite, nous étudions un processus approché de la solution de l'inéquation comportant des sauts aux instants de transition de l' état plastique vers l' état élastique. Nous prouvons que la solution approchée converge sur tout intervalle de temps ni vers la solution de l'inéquation, lorsque la taille du saut tend vers 0. Ensuite, nous défi nissons une inéquation variationnelle stochastique pour modéliser un oscillateur élasto-plastique excité par un bruit blanc filtré. Nous prouvons la propriété ergodique du processus sous-jacent et nous caractérisons sa mesure invariante. Nous étendons la méthode de A.Bensoussan et J.Turi avec une difficulté supplémentaire due à l'accroissement de la dimension. Finalement, dans un chapitre orienté vers l'expérimentation numérique, nous mettons en évidence par les simulations probabilistes le phénomène de phases micro-élastiques. Leur impact concerne des grandeurs utiles a l'ingénieur comme la fréquence des déformations plastiques. Un critère empirique qui peut ^etre utile à l'ingénieur est fourni afin de ne pas prendre en compte les phases micro-élastiques et ainsi évaluer d'une façon réaliste, à partir de la mesure invariante, les statistiques de la déformation plastique d'un oscillateur élasto-plastique excité par un bruit blanc.

Page generated in 0.1154 seconds