Return to search

APPROXIMATION DE PROCESSUS DE DIFFUSION À COEFFICIENTS DISCONTINUS EN DIMENSION UN<br /> ET APPLICATIONS À LA SIMULATION

Dans cette thèse on étudie des schémas numériques pour des processus<br />/X/ à coefficients discontinus. Un premier schéma pour le cas<br />unidimensionnel utilise les Équations Différentielles Stochastiques<br />avec Temps Local. En effet en dimension un les processus /X/ sont<br />solutions de telles équations. On construit une grille sur la droite<br />réelle, qu'une bijection adéquate transforme en une grille uniforme<br />de pas /h/. Cette bijection permet de transformer /X/ en /Y/ qui se<br />comporte localement comme un Skew Brownian Motion, pour lequel on<br />connaît les probabilités de transition sur une grille uniforme, et le<br />temps moyen passé sur chaque cellule de cette grille. Une marche<br />aléatoire peut alors être construite, qui converge vers /X/ en racine<br />de /h/. Toujours dans le cas unidimensionnel on propose un deuxième<br />schéma plus général. On se donne une grille non uniforme sur la<br />droite réelle, dont les cellules ont une taille proportionnelle à<br />/h/. On montre qu'on peut relier les probabilités de transition de<br />/X/ sur cette grille, ainsi que le temps moyen passé par /X/ sur<br />chacune de ses cellules, à des solutions de problèmes d'EDP<br />elliptiques ad hoc. Une marche aléatoire en temps et en espace est<br />ainsi construite, qui permet d'approcher /X/ à nouveau en racine de<br />/h/. Ensuite on présente des pistes pour adapter cette dernière<br />approche au cas bidimensionnel et les problèmes que cela soulève.<br />Enfin on illustre par des exemples numériques les schémas étudiés.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00136282
Date12 December 2006
CreatorsEtore, Pierre
PublisherUniversité Henri Poincaré - Nancy I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds