Nous étudions plusieurs aspects d'équations aux dérivées partielles multi-échelles. Pour trois exemples, la présence de multiples échelles, spatiales ou temporelles, motive un travail de modélisation mathématique ou constitue un enjeu de discrétisation. La première partie est consacrée à la construction et l'étude d'un système multicouche de type Saint-Venant pour décrire un fluide à surface libre (océan). Son obtention s'appuie sur l'analyse des échelles spatiales, précisément l'hypothèse " eau peu profonde ". Nous justifions nos équations à partir du modèle primitif et montrons un résultat d'existence locale de solution. Puis nous proposons un schéma volumes finis et des simulations numériques. Nous étudions ensuite un problème hyperbolique de relaxation, inspiré de la théorie cinétique des gaz. Nous construisons un schéma numérique via une stratégie préservant l'asymptotique : nous montrons sa convergence pour toute valeur du paramètre de relaxation, ainsi que sa consistance avec le problème à l'équilibre local. Des estimations d'erreurs sont établies et des simulations numériques sont présentées. Enfin, nous étudions un problème d'écoulement sanguin dans une artère avec stent, modélisé par un système de Stokes dans un domaine contenant une petite rugosité périodique (géométrie double échelle). Pour éviter une discrétisation coûteuse du domaine rugueux (l'artère stentée), nous formulons un ansatz de développement de la solution type Chapman-Enskog, et obtenons une loi de paroi implicite sur le bord du domaine lisse (artère seule). Nous montrons des estimations d'erreurs et des simulations numériques
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00656013 |
Date | 05 December 2011 |
Creators | Rambaud, Amélie |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds