Return to search

Propriedades de continuação única para soluções de equações de Schrödinger com ponto de interação / Unique continuation properties for solutions of Schrödinger equations with point interaction

Neste trabalho, estudamos propriedades de continuação única para as soluções da equação tipo Schrödinger com um ponto interação centrado em x=0, \\partial_tu=i(\\Delta_Z+V)u, onde V=V(x,t) é uma função de valor real e -\\Delta_Z é o operador escrito formalmente como \\[-\\Delta_Z=-\\frac\\frac{d^2}{dx^2}+Z\\delta_0,\\] sendo \\delta_0 a delta de Dirac centrada em zero e Z qualquer número real. Logo, usamos estes resultados para ver o possível fenômeno de concentração das soluções, que explodem, da equação de tipo Schrödinger não linear com um ponto de interação em x=0, \\[\\partial_tu=i(\\Delta_Zu+|u|^u),\\] com ho>5. Também, mostramos que para certas condições sobre o potencial dependente do tempo V, a equação linear em cima tem soluções não triviais. / In this work, we study unique continuation properties for solutions of the Schrödinger equations with an point interaction centered at $x=0$, \\begin\\label \\partial_tu=i(\\Delta_Z+V)u, \\end where $V=V(x,t)$ is real value function and $-\\Delta_Z$ is the operator formally written \\[-\\Delta_Z=-\\frac\\frac{d^2}{dx^2}+Z\\delta_0,\\] and $\\delta_0$ is Dirac\'s delta centered at zero and $Z$ is a real number. Next, we use these results in order to study the possible profile of the concentration of blow up solutions for the non linear Schrödinger equation with a point interaction at $x=0$, \\[\\partial_tu=i(\\Delta_Zu+|u|^u),\\] with $ho>5$. Besides, we show that the equation above has non trivial solutions for some conditions on the time dependent potencial $V$.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20052016-141417
Date17 August 2015
CreatorsCabarcas Urriola, Hector Jose
ContributorsPava, Jaime Angulo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0021 seconds