<p>Neurofibromatosis type-2 (NF2) is an autosomal dominant disorder with the clinical hallmark of bilateral eighth cranial nerve schwannomas. However, the diagnostic criterion is complicated by the presence of a variable phenotype, with the severe form presenting with additional tumors such as peripheral schwannoma, meningioma and ependymoma. We constructed a microarray spanning 11Mb of 22q, encompassing the <i>NF2 </i>gene, to detect deletions in schwannoma. Forty seven patients were analyzed and heterozygous deletions were detected in 45% of tumors. Using this array-based approach, we also detected genetic heterogeneity in a number of samples studied. Despite the high sensitivity and the comprehensive series of studied schwannomas, no homozygous deletions affecting the <i>NF2</i> gene were detected <b>(paper I)</b>. In order to detect more subtle deletions within the <i>NF2</i> locus, a higher-resolution gene-specific array was developed, for the detection of disease-causing<b> </b>deletions using a PCR-based non-redundant strategy. This novel approach for array construction significantly increased the reliability and resolution of deletion-detection within the <i>NF2 </i>locus <b>(paper II)</b>. To further expand the coverage of the 11 Mb microarray, we constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number. This 22q array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb <b>(paper III)</b>. Using this array, we analyzed sporadic and familial schwannomatosis samples, which revealed two commonly deleted regions within the immunoglobulin lambda locus and the <i>GSTT1/CABIN1</i> locus. These regions were further characterized using higher-resolution non-redundant arrays, bioinformatic tools, positional cloning and mutational screening. Missense mutations were detected in the <i>CABIN1</i> gene, which may contribute to the pathogenesis of schwannomatosis and therefore requires further study <b>(paper IV)</b>. Meningioma is the second most common NF2-associated tumor and loss of 1p has been previously established as a major genetic factor for disease initiation/progression and also correlates with increased morbidity. We analyzed 82 meningiomas using a chromosome 1 tiling-path genomic microarray. The distribution of aberrations detected supports the existence of at least four regions on chromosome 1, which are important for meningioma tumorigenesis <b>(paper V)</b>.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-4786 |
Date | January 2005 |
Creators | Buckley, Patrick |
Publisher | Uppsala University, Department of Genetics and Pathology, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 0282-7476 ; 8 |
Page generated in 0.0024 seconds