• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Application of Microarray-Based Comparative Genomic Hybridization : Analysis of Neurofibromatosis Type-2, Schwannomatosis and Related Tumors

Buckley, Patrick January 2005 (has links)
<p>Neurofibromatosis type-2 (NF2) is an autosomal dominant disorder with the clinical hallmark of bilateral eighth cranial nerve schwannomas. However, the diagnostic criterion is complicated by the presence of a variable phenotype, with the severe form presenting with additional tumors such as peripheral schwannoma, meningioma and ependymoma. We constructed a microarray spanning 11Mb of 22q, encompassing the <i>NF2 </i>gene, to detect deletions in schwannoma. Forty seven patients were analyzed and heterozygous deletions were detected in 45% of tumors. Using this array-based approach, we also detected genetic heterogeneity in a number of samples studied. Despite the high sensitivity and the comprehensive series of studied schwannomas, no homozygous deletions affecting the <i>NF2</i> gene were detected <b>(paper I)</b>. In order to detect more subtle deletions within the <i>NF2</i> locus, a higher-resolution gene-specific array was developed, for the detection of disease-causing<b> </b>deletions using a PCR-based non-redundant strategy. This novel approach for array construction significantly increased the reliability and resolution of deletion-detection within the <i>NF2 </i>locus <b>(paper II)</b>. To further expand the coverage of the 11 Mb microarray, we constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number. This 22q array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb <b>(paper III)</b>. Using this array, we analyzed sporadic and familial schwannomatosis samples, which revealed two commonly deleted regions within the immunoglobulin lambda locus and the <i>GSTT1/CABIN1</i> locus. These regions were further characterized using higher-resolution non-redundant arrays, bioinformatic tools, positional cloning and mutational screening. Missense mutations were detected in the <i>CABIN1</i> gene, which may contribute to the pathogenesis of schwannomatosis and therefore requires further study <b>(paper IV)</b>. Meningioma is the second most common NF2-associated tumor and loss of 1p has been previously established as a major genetic factor for disease initiation/progression and also correlates with increased morbidity. We analyzed 82 meningiomas using a chromosome 1 tiling-path genomic microarray. The distribution of aberrations detected supports the existence of at least four regions on chromosome 1, which are important for meningioma tumorigenesis <b>(paper V)</b>.</p>
2

Development and Application of Human Chromosome 22 Genomic Microarray : Chromosome 22-Associated Disorders Analyzed by Array-Based Comparative Genomic Hybridization

Benetkiewicz, Magdalena January 2006 (has links)
<p>The array-based form of comparative genomic hybridization (array-CGH) is a new methodology that has shown to be of significant importance. This thesis focuses on the development of array-CGH with the aim to define candidate regions/genes on chromosome 22 in a wide spectrum of cancer-related conditions. In <b>paper I</b>, we developed and applied the first comprehensive genomic microarray, representing human chromosome 22, for analysis of DNA copy number. Using this array-based approach, we identified gene copy number alterations, including heterozygous/homozygous deletions, amplifications, IGLV/IGLC locus instability and the breakpoints of imbalanced translocation, in several 22q-associated disorders. In <b>paper II</b>, we applied the same array to perform DNA copy number profiling of a series of ovarian carcinoma. cDNA arrays were also used in this study to correlate gene expression levels with DNA-copy number. In the course of this analysis, we determined a small 3.5 Mb candidate 22q telomeric region and suggested a number of specific candidate genes. <b>Paper III</b> described the comprehensive and high-resolution analysis of chromosome 22 in a large set of various stage breast cancers. Multiple distinct patterns of genetic aberrations were observed. The smallest identified candidate locus was 220 kb in size and mapped to a gene-rich region in the vicinity of telomere of 22q. Intriguing result of this study was the detection of high frequency (26.6%) of intra-tumoral clonal variation in gene copy number profiles, which should be viewed as a high number, considering that we study in detail only a single human chromosome. In <b>paper IV</b>, we profiled a series of 28 Wilms tumor samples using 22q-array in order to assess specific regions affected with DNA dosage-alterations. The distribution of aberrations defined a complex amplifier genotype and delimited two tumor suppressor/oncogene candidate loci. These results open up for several avenues for continued research of these tumor forms. These findings also demonstrate the power of array-CGH in the precise determination of minute DNA copy number alterations and strengthen the notion that further studies, preferentially in the context of the entire human genome, are needed.</p>
3

Development and Application of Microarray-Based Comparative Genomic Hybridization : Analysis of Neurofibromatosis Type-2, Schwannomatosis and Related Tumors

Buckley, Patrick January 2005 (has links)
Neurofibromatosis type-2 (NF2) is an autosomal dominant disorder with the clinical hallmark of bilateral eighth cranial nerve schwannomas. However, the diagnostic criterion is complicated by the presence of a variable phenotype, with the severe form presenting with additional tumors such as peripheral schwannoma, meningioma and ependymoma. We constructed a microarray spanning 11Mb of 22q, encompassing the NF2 gene, to detect deletions in schwannoma. Forty seven patients were analyzed and heterozygous deletions were detected in 45% of tumors. Using this array-based approach, we also detected genetic heterogeneity in a number of samples studied. Despite the high sensitivity and the comprehensive series of studied schwannomas, no homozygous deletions affecting the NF2 gene were detected <b>(paper I)</b>. In order to detect more subtle deletions within the NF2 locus, a higher-resolution gene-specific array was developed, for the detection of disease-causing<b> </b>deletions using a PCR-based non-redundant strategy. This novel approach for array construction significantly increased the reliability and resolution of deletion-detection within the NF2 locus <b>(paper II)</b>. To further expand the coverage of the 11 Mb microarray, we constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number. This 22q array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb <b>(paper III)</b>. Using this array, we analyzed sporadic and familial schwannomatosis samples, which revealed two commonly deleted regions within the immunoglobulin lambda locus and the GSTT1/CABIN1 locus. These regions were further characterized using higher-resolution non-redundant arrays, bioinformatic tools, positional cloning and mutational screening. Missense mutations were detected in the CABIN1 gene, which may contribute to the pathogenesis of schwannomatosis and therefore requires further study <b>(paper IV)</b>. Meningioma is the second most common NF2-associated tumor and loss of 1p has been previously established as a major genetic factor for disease initiation/progression and also correlates with increased morbidity. We analyzed 82 meningiomas using a chromosome 1 tiling-path genomic microarray. The distribution of aberrations detected supports the existence of at least four regions on chromosome 1, which are important for meningioma tumorigenesis <b>(paper V)</b>.
4

Development and Application of Human Chromosome 22 Genomic Microarray : Chromosome 22-Associated Disorders Analyzed by Array-Based Comparative Genomic Hybridization

Benetkiewicz, Magdalena January 2006 (has links)
The array-based form of comparative genomic hybridization (array-CGH) is a new methodology that has shown to be of significant importance. This thesis focuses on the development of array-CGH with the aim to define candidate regions/genes on chromosome 22 in a wide spectrum of cancer-related conditions. In <b>paper I</b>, we developed and applied the first comprehensive genomic microarray, representing human chromosome 22, for analysis of DNA copy number. Using this array-based approach, we identified gene copy number alterations, including heterozygous/homozygous deletions, amplifications, IGLV/IGLC locus instability and the breakpoints of imbalanced translocation, in several 22q-associated disorders. In <b>paper II</b>, we applied the same array to perform DNA copy number profiling of a series of ovarian carcinoma. cDNA arrays were also used in this study to correlate gene expression levels with DNA-copy number. In the course of this analysis, we determined a small 3.5 Mb candidate 22q telomeric region and suggested a number of specific candidate genes. <b>Paper III</b> described the comprehensive and high-resolution analysis of chromosome 22 in a large set of various stage breast cancers. Multiple distinct patterns of genetic aberrations were observed. The smallest identified candidate locus was 220 kb in size and mapped to a gene-rich region in the vicinity of telomere of 22q. Intriguing result of this study was the detection of high frequency (26.6%) of intra-tumoral clonal variation in gene copy number profiles, which should be viewed as a high number, considering that we study in detail only a single human chromosome. In <b>paper IV</b>, we profiled a series of 28 Wilms tumor samples using 22q-array in order to assess specific regions affected with DNA dosage-alterations. The distribution of aberrations defined a complex amplifier genotype and delimited two tumor suppressor/oncogene candidate loci. These results open up for several avenues for continued research of these tumor forms. These findings also demonstrate the power of array-CGH in the precise determination of minute DNA copy number alterations and strengthen the notion that further studies, preferentially in the context of the entire human genome, are needed.

Page generated in 0.0504 seconds