[pt] O presente trabalho investiga as potenciais explicações para o fenômeno do Missing Disinflation Puzzle. Nós montamos uma base de dados contendo apenas variáveis associadas com o fenômeno, e utilizamos métodos de Machine Learning para calcular estimativas para a inflação do Consumer Price Index durante o período de interesse. Esses métodos podem lidar com bases de dados extensas, e realizar seleção de variáveis. Um exercício de seleção de melhores modelos utilizando a técnica de Model Confidence Set sobre previsões pseudo out-of-sample é proposto. Nós analisamos o padrão de seleção de variáveis entre os melhores modelos selecionados e encontramos evidência a favor das explicações associadas ao uso de diferentes métricas de expectativas de inflação - em especial aquelas ligadas a pesquisas feitas com consumidores. / [en] This paper examines the potential explanations for the Missing Disinflation Puzzle (MDP). We construct a data set containing only variables associated with the puzzle, and use of Machine Learning (ML) methods to
compute estimates for U.S. Consumer Price Index inflation over the period of interest. These methods can handle large data sets, and perform variable selection. A model selection exercise using Model Confidence Set over pseudo-out-of-sample forecasts is proposed to assess forecasting performance and to analyze the variable selection pattern of these models. We analyze the variable selection performed by the best models and find evidence for explanations associated with different metrics for inflation expectations - in particular those linked to consumers surveys.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:54981 |
Date | 23 September 2021 |
Contributors | EDUARDO ZILBERMAN, EDUARDO ZILBERMAN |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Unknown |
Type | TEXTO |
Page generated in 0.0027 seconds