Return to search

Modeling of magnetic optic for the short pulse mode operation of Energy Recovery Linac based light sources

Das Forschungsfeld der Synchrotronstrahlungsquellen hat sich in den letzen Jahren entscheidend weiterentwickelt. Alle Zukunftsideen, unabhängig von ihrer Komplexität, haben dennoch eines gemeinsam: die Erzeugung kurzer Pulse. Die Naturwissenschaften haben die Spitzenbrillanz, die mit Hilfe kürzester Pulse produziert werden kann, als neues Schlüsselwerkzeug entdeckt. Die Nutzergemeinschaft verlangt nicht mehr nur ein statisches Bild, sondern vielmehr eine Reihe von bewegten Aufnahmen atomarer Substrukturen und den dazugehöringen Prozessen. Existierende dritte Generation Synchrotronstrahlungsquellen werden an die neuen Herausforderungen angepasst: Verbesserungen an der Magnet-Optik sowie der Einbau modernster Beschleunigertechnologie ermöglichen die Erzeugung kürzester Pulse mit höchster Brillanz für zeitaufgelöste Experimente. Ein möglicher Kandidat für die Lichtquelle der nächsten Generation ist ein Linear-Beschleuniger mit Energierückgewinnung. Durch die Verwendung langer Beschleunigungsstrukturen kann es, selbst bei hohen Energien, nicht zur Ausbildung des Emittanzgleichgewichts wie in Speicherringen kommen. Durch die Verwendung Impulsabhängiger-Umlaufbahnen und der Rückgewinnung der Strahlenergie ist es mit `Energy Recovery Linac'' (ERL)-basierten Quellen energieeffizient möglich, hochenergetische Elektronen-Pulse im Femtosekundenbereich zu erzeugen. Die longitudinale Elekronstrahldynamik solcher ERLs ist eines der Hauptthemen dieser Arbeit. Umfangreiche Simulationen über die gesamte Maschine wurden im Rahmen der `Femto-Science Factory'' Lichtquellen Studie durchgeführt. Die Begrenzungen des Kurzpulsmodus Betriebes wurden untersucht und mit den Erwartungen verglichen. Besondere Aufmerksamkeit lag dabei auf den 6D Elektronenstrahleigenschaften, insbesondere auf der Vermeidung von Strahlaufweitungen, die mit der Erzeugung von Ultra-Kurzpulsen einhergehen können. / Synchrotron light sources are entering a new era. No matter how elaborate, all the next generation proposals share a common necessity; the production of ultra-short electron bunches. There is an evolution in the field of science under investigation using the high peak brilliance generated from such bunches. The user community is demanding not just pictures but videos of atomic substructures and the processes that define them. Existing 3rd generation facilities are modifying their magnetic lattices and upgrading the acceleration schemes in order to keep up with this trend of generating short pulses with ultimate brilliance for time resolved experiments. A possible candidate for the next generation light source is one based on ERL technology. Using long linacs to accelerate to high energies overcomes the present limitation of emittance equilibrium in storage rings. By implementing independent arcs for acceleration and deceleration while recuperating the beams energy, ERL based sources are theoretically capable of efficiently producing high energy femtosecond long bunch lengths. The study of the longitudinal motion of the beam through single pass magnetic optic in combination with linacs is the main topic of this thesis. Dedicated start-to-end simulations in the framework of the Femto-Science Factory large scale light source are undertaken. The expectations and restrictions on the short pulse mode (SPM) operation are comprehensively examined in this work. Particular attention is given to the 6D electron beam properties and with it the beam degradation caused by the production of ultra-short bunches.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17952
Date25 September 2015
CreatorsAtkinson, Terry
ContributorsMatveenko, Alexander, Jaeschke, Eberhard, Aulenbacher, Kurt
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0024 seconds