"Elliptic Curve Cryptosystems (ECCs) are utilized as an alternative to traditional public-key cryptosystems, and are more suitable for resource limited environments due to smaller parameter size. In this dissertation we carry out a thorough investigation of side-channel attack aware ECC implementations over finite fields of prime characteristic including the recently introduced Edwards formulation of elliptic curves, which have built-in resiliency against simple side-channel attacks. We implement Joye's highly regular add-always scalar multiplication algorithm both with the Weierstrass and Edwards formulation of elliptic curves. We also propose a technique to apply non-adjacent form (NAF) scalar multiplication algorithm with side-channel security using the Edwards formulation. Our results show that the Edwards formulation allows increased area-time performance with projective coordinates. However, the Weierstrass formulation with affine coordinates results in the simplest architecture, and therefore has the best area-time performance as long as an efficient modular divider is available."
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1337 |
Date | 08 August 2010 |
Creators | Karakoyunlu, Deniz |
Contributors | Berk Sunar, Advisor, Xinming Huang, Committee Member, Wenjing Lou, Committee Member, Erkay Savas, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Doctoral Dissertations (All Dissertations, All Years) |
Page generated in 0.0016 seconds