[pt] A maioria dos robôs industriais da atualidade são
programados para seguir
uma trajetória pré-definida. Isto é suficiente quando o
robô está trabalhando em
um ambiente imutável onde todos os objetos estão em uma
posição conhecida
em relação à base do manipulador. No entanto, se a posição
da base do robô é
alterada, todas as trajetórias precisam ser reprogramadas
para que ele seja capaz
de cumprir suas tarefas. Outra opção é a teleoperação, onde
um operador
humano conduz todos os movimento durante a operação em uma
arquitetura
mestre-escravo. Uma vez que qualquer erro de posicionamento
pode ser
visualmente compensado pelo operador humano, essa
configuração não requer
que o robô possua alta precisão absoluta. No entanto, a
desvantagem deste
enfoque é a baixa velocidade e precisão se comparado com um
sistema
totalmente automatizado. O manipulador considerado nesta
dissertação está fixo
em um ROV (Remote Operating Vehicle) e é trazido até seu
ambiente de
trabalho por um teleoperador. A cada vez que a base do
manipulador é
reposicionada, este precisa estimar sua posição e
orientação relativa ao ambiente
de trabalho. O ROV opera em grandes profundidades, e há
poucos sensores que
podem operar nestas condições adversas. Isto incentiva o
uso de visão
computacional para estimar a posição relativa do
manipulador. A diferença entre
a posição real e a desejada é estimada através do uso de
câmeras submarinas. A
informação é enviada aos controladores para corrigir as
trajetórias préprogramadas.
Os comandos de movimento do manipulador podem então ser
programados off-line por um sistema de CAD, sem a
necessidade de ligar o robô,
permitindo rapidez na validação das trajetórias. Esse
trabalho inclui a calibragem
tanto da câmera quanto da estrutura do manipulador. As
melhores precisões
absolutas obtidas por essas metodologias são combinadas
para obter calibração
in-situ da base do manipulador. / [en] The majority of today`s industrial robots are programmed
to follow a
predefined trajectory. This is sufficient when the robot
is working in a fixed
environment where all objects of interest are situated in
a predetermined position
relative to the robot base. However, if the robot`s
position is altered all the
trajectories have to be reprogrammed for the robot to be
able to perform its
tasks. Another option is teleoperation, where a human
operator conducts all the
movements during the operation in master-slave
architecture. Since any
positioning errors can be visually compensated by the
human operator, this
configuration does not demand that the robot has a high
absolute accuracy.
However, the drawback is the low speed and low accuracy
of the human
operator scheme. The manipulator considered in this
thesis is attached to a ROV
(Remote Operating Vehicle) and is brought to its working
environment by the
ROV operator. Every time the robot is repositioned, it
needs to estimate its
position and orientation relative to the work
environment. The ROV operates at
great depths and there are few sensors which can operate
at extreme depths. This
is the incentive for the use of computer vision to
estimate the relative position of
the manipulator. Through cameras the differences between
the actual and desired
position of the manipulators is estimated. This
information is sent to controllers
to correct the pre-programmed trajectories. The
manipulator movement
commands are programmed off-line by a CAD system, without
need even to turn
on the robot, allowing for greatest speed on its
validation, as well as problem
solving. This work includes camera calibration and
calibration of the structure of
the manipulator. The increased accuracies achieved by
these steps are merged to
achieve in-situ calibration of the manipulator base.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:11617 |
Date | 08 May 2008 |
Creators | TROND MARTIN AUGUSTSON |
Contributors | MARCO ANTONIO MEGGIOLARO, MARCO ANTONIO MEGGIOLARO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0031 seconds