Return to search

Quantitative estimation from multiple cues

Wie schätzen Menschen quantitative Größen wie zum Beispiel den Verkaufspreis eines Autos? Oft benutzen Menschen zur Lösung von Schätzproblemen sogenannte Cues, Informationen, die probabilistisch mit dem zu schätzenden Kriterium verknüpft sind. Um den Verkaufspreis eines Autos zu schätzen, könnte man zum Beispiel Informationen über das Baujahr, die Automarke, oder den Kilometerstand des Autos verwenden. Um menschliche Schätzprozesse zu beschreiben, werden häufig linear additive Modelle herangezogen. In meiner Dissertation schlage ich alternative ein heuristisches Modell zur Schätzung quantitativer Größen vor: das Mapping-Modell. Im ersten Kapitel meiner Dissertation teste ich das Mapping-Modell gegen weitere, in der Literatur etablierte, Schätzmodelle. Es zeigte sich, dass das Mapping-Modell unter unterschiedlichen Bedingungen in der Lage war, die Schätzungen der Untersuchungsteilnehmer akkurat vorherzusagen. Allerdings bestimmte die Struktur der Aufgabe - im Einklang mit dem Ansatz der „adaptiven Werkzeugkiste“ - im großen Maße, welches Modell am besten geeignet war, die Schätzungen zu erfassen. Im zweiten Kapitel meiner Dissertation greife ich diesen Ansatz auf und untersuche, in wie weit die Aufgabenstruktur bestimmt, welches Modell die Schätzprozesse am Besten beschreibt. Meine Ergebnisse zeigten, dass das Mapping-Modell am Besten dazu geeignet war die Schätzungen der Versuchsteilnehmer zu beschreiben, wenn explizites Wissen über die Aufgabe vorhanden war, während ein Exemplar-Modell den Schätzprozess erfasste, wenn die Abstraktion von Wissen schwierig war. Im dritten Kapitel meiner Dissertation, wende ich das Mapping-Modell auf juristische Entscheidungen an. Eine Analyse von Strafakten ergab, dass das Mapping-Modell Strafzumessungsvorschläge von Staatsanwälten besser vorhersagte als eine lineare Regression. Dies zeigt, dass das Mapping-Modell auch außerhalb von Forschungslaboratorien dazu geeignet ist menschliche Schätzprozesse zu beschreiben. / How do people make quantitative estimations, such as estimating a car’s selling price? Often people rely on cues, information that is probabilistically related to the quantity they are estimating. For instance, to estimate the selling price of a car they could use information, such as the car’s manufacturer, age, mileage, or general condition. Traditionally, linear regression type models have been employed to capture the estimation process. In my dissertation, I propose an alternative cognitive theory for quantitative estimation: The mapping model which offers a heuristic approach to quantitative estimations. In the first part of my dissertation l test the mapping model against established alternative models of estimation, namely, linear regression, an exemplar model, and a simple estimation heuristic. The mapping model provided a valid account of people’s estimates outperforming the other models in a variety of conditions. Consistent with the “adaptive toolbox” approach on decision, which model was best in predicting participants’ estimations was a function of the task environment. In the second part of my dissertation, I examined further how different task features affect the performance of the models make. My results indicate that explicit knowledge about the cues is decisive. When knowledge about the cues was available, the mapping model was the best model; however, if knowledge about the task was difficult to abstract, participants’ estimations were best described by the exemplar model. In the third part of my dissertation, I applied the mapping model in the field of legal decision making. In an analysis of fining and incarceration decisions, I showed that the prosecutions’ sentence recommendations were better captured by the mapping model than by legal policy modeled with a linear regression. These results indicated that the mapping model is a valid model which can be applied to model actual estimation processes outside of the laboratory.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16370
Date06 February 2008
CreatorsHelversen, Bettina von
ContributorsGigerenzer, Gerd, Frensch, Peter, Juslin, Peter
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf, application/octet-stream, application/octet-stream

Page generated in 0.0028 seconds