Spelling suggestions: "subject:"kognitiva senkungsmodellierung"" "subject:"kognitiva härtungsmodellierung""
1 |
Untersuchung der kognitiven Modellierung zur GussstückqualitätsverbesserungPolyakova, Irina 25 March 2014 (has links) (PDF)
Als Ergebnis der vorliegenden Arbeit wurde ein nützliches Hilfsmittel auf der Basis der kognitiven Herangehensweise zur Verbesserung der Effizienz der Managemententscheidungen für die Gussausschussverringerung und Qualitätsverbesserung in den Gießereien entwickelt. Das Werkzeug hilft dem Technologen, den Mechanismus des Gussfehlerentstehungsprozesses aufzudecken, die Logik der Gussfehlerentstehung zu verstehen und die präventiven Maßnahmen zu testen. Man kann das Werkzeug täglich im Betrieb benutzen, um die strategischen und operativen Entscheidungen rasch und ohne Durchführung der kostspieligen und komplizierten Versuche zu treffen. Auf diese Weise können Kosten und Zeit eingespart werden.
|
2 |
Untersuchung der kognitiven Modellierung zur GussstückqualitätsverbesserungPolyakova, Irina 17 July 2013 (has links)
Als Ergebnis der vorliegenden Arbeit wurde ein nützliches Hilfsmittel auf der Basis der kognitiven Herangehensweise zur Verbesserung der Effizienz der Managemententscheidungen für die Gussausschussverringerung und Qualitätsverbesserung in den Gießereien entwickelt. Das Werkzeug hilft dem Technologen, den Mechanismus des Gussfehlerentstehungsprozesses aufzudecken, die Logik der Gussfehlerentstehung zu verstehen und die präventiven Maßnahmen zu testen. Man kann das Werkzeug täglich im Betrieb benutzen, um die strategischen und operativen Entscheidungen rasch und ohne Durchführung der kostspieligen und komplizierten Versuche zu treffen. Auf diese Weise können Kosten und Zeit eingespart werden.
|
3 |
Load-inducing factors in instructional design: Process-related advances in theory and assessmentWirzberger, Maria 25 January 2019 (has links)
Die vorliegende Dissertation nähert sich aktuellen Kontroversen in der Forschung zur kognitiven Beanspruchung in Lehr-Lernsituationen im Zusammenhang mit der Abgrenzung und dem Zusammenspiel ressourcenbeanspruchender Faktoren unter einer zeitbezogenen Perspektive. In einem neuartigen Forschungsansatz werden zu diesem Zweck experimentelle Aufgaben aus der kognitiven Grundlagenforschung angewendet und verschiedene Methoden zur Erfassung der kognitiven Beanspruchung und der Betrachtung zugrunde liegender kognitiver Prozesse kombiniert. Zusammenfassend betonen die gewonnenen Erkenntnisse eine prozessgeleitete Rekonzeptualisierung des bestehenden theoretischen Rahmenmodells der kognitiven Beanspruchung und unterstreichen zusätzlich die Bedeutung eines multimethodischen Ansatzes zur kontinuierlichen Erfassung der kognitiven Beanspruchung. Auf praktischer Seite lassen sich zentrale Hinweise für die Entwicklung adaptiver Algorithmen sowie eine an den Lernenden orientierte Gestaltung instruktionaler Prozesse ableiten, welche den Weg zu intelligenten Lehr-Lernsystemen eröffnen. / This thesis addresses ongoing controversies in cognitive load research related to the scope and interplay of resource-demanding factors in instructional situations on a temporal perspective. In a novel approach, it applies experimental task frameworks from basic cognitive research and combines different methods for assessing cognitive load and underlying cognitive processes. Taken together, the obtained evidence emphasizes a process-related reconceptualization of the existing theoretical cognitive load framework and underlines the importance of a multimethod-approach to continuous cognitive load assessment. On a practical side, it informs the development of adaptive algorithms and the learner-aligned design of instructional support and thus leverages a pathway towards intelligent educational assistants.
|
4 |
Bayesian cognitive modeling of the balancing between goal-directed and habitual behaviorSchwöbel, Sarah 05 November 2020 (has links)
This thesis proposes a novel way to describe habit learning and the resulting balancing of goal-directed and habitual behavior using cognitive computational modeling. This approach builds on experimental evidence that habits may be understood as context-dependent automated sequences of behavior embedded in a hierarchical model. These assumptions were implemented in a Bayesian model, where goal-directed action sequences are encoded using a Markov decision process, and habits are interpreted to arise from a Bayesian prior over such sequences. Simulations show that this modeling approach yields key properties of habit learning, such as increased habit strength with increased training duration. This novel mechanistic description may lead to an improved understanding of habit learning mechanisms and individual learning trajectories, which may have implications for mental disorders which are believed to be accompanied by a maladapted balance between goal-directed an habitual control. / Diese Arbeit stellt eine neue mechanistische Beschreibung von Gewohnheitslernen und der daraus resultierenden Balance zwischen zielgerichtetem und habituellem Verhalten vor, die auf einem mathematischen kognitiven Modell aufbaut. Der Ansatz beruht auf experimenteller Evidenz, dass Gewohnheiten als kontext-abhängige, automatisierte Verhaltenssequenzen verstanden werden können, die in ein hierarchisches Modell eingebettet sind. Diese Annahmen werden mathematisch in einem Bayes'schen Modell umgesetzt, in dem zielgerichtetes Handeln als ein Markov'scher Entscheidungsprozess implementiert ist und Gewohnheiten aus einer Bayes'schen a-priori Wahrscheinlichkeit von Verhaltenssequenzen entstehen. Simulationen zeigen, dass dieser Ansatz wichtige Eigenschaften von Gewohnheitslernen reproduzieren kann, wie beispielsweise dass längere Trainingsdauern zu stärkeren Gewohnheiten führen. Diese neue mechanistische Beschreibung kann zu einem besseren Verständis individueller Lerntrajektorien und der Mechanismen beitragen, die dem Gewohnheitslernen zugrundeliegen. Dies könnte auch Auswirkungen auf das Verständnis psychischer Erkrankungen haben, bei denen davon ausgegangen wird, dass sie von einer maladaptiven Balance zwischen zielgerichtetem und habituellem Verhalten begleitet werden.
|
5 |
Developmental Changes in Learning: Computational Mechanisms and Social InfluencesBolenz, Florian, Reiter, Andrea M. F., Eppinger, Ben 06 June 2018 (has links) (PDF)
Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development.
|
6 |
Developmental Changes in Learning: Computational Mechanisms and Social InfluencesBolenz, Florian, Reiter, Andrea M. F., Eppinger, Ben 06 June 2018 (has links)
Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development.
|
7 |
Quantitative estimation from multiple cues / test and application of a new cognitive modelHelversen, Bettina von 06 February 2008 (has links)
Wie schätzen Menschen quantitative Größen wie zum Beispiel den Verkaufspreis eines Autos? Oft benutzen Menschen zur Lösung von Schätzproblemen sogenannte Cues, Informationen, die probabilistisch mit dem zu schätzenden Kriterium verknüpft sind. Um den Verkaufspreis eines Autos zu schätzen, könnte man zum Beispiel Informationen über das Baujahr, die Automarke, oder den Kilometerstand des Autos verwenden. Um menschliche Schätzprozesse zu beschreiben, werden häufig linear additive Modelle herangezogen. In meiner Dissertation schlage ich alternative ein heuristisches Modell zur Schätzung quantitativer Größen vor: das Mapping-Modell. Im ersten Kapitel meiner Dissertation teste ich das Mapping-Modell gegen weitere, in der Literatur etablierte, Schätzmodelle. Es zeigte sich, dass das Mapping-Modell unter unterschiedlichen Bedingungen in der Lage war, die Schätzungen der Untersuchungsteilnehmer akkurat vorherzusagen. Allerdings bestimmte die Struktur der Aufgabe - im Einklang mit dem Ansatz der „adaptiven Werkzeugkiste“ - im großen Maße, welches Modell am besten geeignet war, die Schätzungen zu erfassen. Im zweiten Kapitel meiner Dissertation greife ich diesen Ansatz auf und untersuche, in wie weit die Aufgabenstruktur bestimmt, welches Modell die Schätzprozesse am Besten beschreibt. Meine Ergebnisse zeigten, dass das Mapping-Modell am Besten dazu geeignet war die Schätzungen der Versuchsteilnehmer zu beschreiben, wenn explizites Wissen über die Aufgabe vorhanden war, während ein Exemplar-Modell den Schätzprozess erfasste, wenn die Abstraktion von Wissen schwierig war. Im dritten Kapitel meiner Dissertation, wende ich das Mapping-Modell auf juristische Entscheidungen an. Eine Analyse von Strafakten ergab, dass das Mapping-Modell Strafzumessungsvorschläge von Staatsanwälten besser vorhersagte als eine lineare Regression. Dies zeigt, dass das Mapping-Modell auch außerhalb von Forschungslaboratorien dazu geeignet ist menschliche Schätzprozesse zu beschreiben. / How do people make quantitative estimations, such as estimating a car’s selling price? Often people rely on cues, information that is probabilistically related to the quantity they are estimating. For instance, to estimate the selling price of a car they could use information, such as the car’s manufacturer, age, mileage, or general condition. Traditionally, linear regression type models have been employed to capture the estimation process. In my dissertation, I propose an alternative cognitive theory for quantitative estimation: The mapping model which offers a heuristic approach to quantitative estimations. In the first part of my dissertation l test the mapping model against established alternative models of estimation, namely, linear regression, an exemplar model, and a simple estimation heuristic. The mapping model provided a valid account of people’s estimates outperforming the other models in a variety of conditions. Consistent with the “adaptive toolbox” approach on decision, which model was best in predicting participants’ estimations was a function of the task environment. In the second part of my dissertation, I examined further how different task features affect the performance of the models make. My results indicate that explicit knowledge about the cues is decisive. When knowledge about the cues was available, the mapping model was the best model; however, if knowledge about the task was difficult to abstract, participants’ estimations were best described by the exemplar model. In the third part of my dissertation, I applied the mapping model in the field of legal decision making. In an analysis of fining and incarceration decisions, I showed that the prosecutions’ sentence recommendations were better captured by the mapping model than by legal policy modeled with a linear regression. These results indicated that the mapping model is a valid model which can be applied to model actual estimation processes outside of the laboratory.
|
8 |
Making decisions under conflict with a continuous mind: from micro to macro time scales / Entscheidungen unter Konflikt: Effekte auf verschiedenen ZeitskalenScherbaum, Stefan 05 November 2010 (has links) (PDF)
Making decisions is a dynamic process. Especially when we face a decision between conflicting options, different forces seem to drag our mind from one option to the other one (James, 1890), again and again. This process may last for a long time, sometimes only coming to a decision when we are finally forced to choose, e.g. by an important deadline.
Psychology and many other disciplines were interested in how humans make decisions from their beginnings on. Many different influences on decisions were discovered (e.g. Kahneman & Tversky, 1979; Todd & Gigerenzer, 2000). In the face of these advances, it seems odd, that knowledge about the ongoing process of reaching a decision is rare and much of the investigation has focused on the final outcome of choice situations (Townsend & Busemeyer, 1995). A very recent approach, called neuroeconomics, started out to investigate what happens behind the scenes of a final decision. Using modern neuroimaging methods, many neuroeconomists explain decision making in the brain in terms of a hierarchy of different neural modules that work together like a big corporation to finally make the best possible decision (Sanfey, Loewenstein, McClure, & Cohen, 2006). However, the focus on neural modules also limits this approach to a quite static view of decision making and many questions, related to the dynamic aspects of decision making, still remain open: How do we continuously control impulsive or habitual tendencies in our decisions when we pursue long-term goals? How do we shift attention back and forth between (goal) relevant properties of choice options? How do we adjust and readjust our focus of attention to relevant information in order to avoid distraction by irrelevant or misleading information? And how are we influenced by the environmental context when we make decisions?
The present work aims to show how an approach based on the concepts of dynamic systems theory could complement the module oriented approach and enhance our knowledge of the processes of decision making. Chapter 2 elaborates the limits of the module oriented approach, with a special focus on decisions under conflict, when we are faced with conflicting information, and introduces the principles of a complementary dynamic approach. Chapter 3 deduces the dynamic hypothesis of this work: ongoing processes interactions at different time scales can explain specific cognitive functions without postulating specialized modules for this function. To approach this hypothesis, chapter 4 will develop a theoretical and empirical framework to study decision making dynamically. The empirical part, building on the empirical framework, starts with chapter 5 presenting an EEG experiment. Chapter 6 presents two mouse tracking experiments, and chapter 7 presents a modelling study, reproducing the empirical data of chapters 5 and 6. The general discussion in chapter 8 summarizes the theoretical and empirical results and discusses possible limitations. Finally, chapter 9 discusses the implications of the dynamic approach to decision making, presents an outlook on future research projects, and closes the work by offering a dynamic picture of the processes behind the stage of a final decision. / „Man kann nicht beides haben: Den Rahm und die Butter.“ - „Wer die Wahl hat, hat die Qual.“ Mit diesen Sprichwörtern beklagt der Volksmund, womit das Leben uns immer wieder konfrontiert: wir müssen entscheiden, und oftmals führt uns das in Entscheidungskonflikte. Im Dilemma solcher Konflikte mag es begründet sein, dass das Thema der vorliegenden Arbeit, die Entscheidungsforschung, nicht nur in der Psychologie schon immer eine wichtige Rolle spielte, sondern auch in anderen Disziplinen, wie der Ökonomie, der angewandten Mathematik und der Philosophie. Die langjährigen Bestrebungen, diese unterschiedlichen Fachbereiche zu integrieren (z.B. Kahneman & Tversky, 1979; von Neumann & Morgenstern, 1944; Savage, 1972), münden aktuell in das Forschungsgebiet der Neuroökonomie (Camerer, Loewenstein, & Prelec, 2005; Loewenstein, Rick, & Cohen, 2008; Sanfey, Loewenstein, McClure, & Cohen, 2006). Neuroökonomen nutzen vielfach die Methoden der bildgebenden Hirnforschung, um durch die Lokalisierung der neuronalen Basis hierarchisch gegliederter Module Entscheidungsprozesse zu erklären (z.B. Sanfey et al., 2006; Fellows, 2004). Während die Anwendung bildgebender Methoden Potential birgt (z.B. Harrison, 2008), ist es vor allem der modulorientierte Ansatz, der das Risiko einer zu eingeschränkten Sichtweise auf Entscheidungsprozesse trägt (z.B. Ortmann, 2008; Oullier & Kelso, 2006).
Dies zeigt sich zum Beispiel im von der kognitiven Psychologie intensiv erforschten Bereich von Entscheidungen unter Konflikt. Eine zentrale Rolle bei dieser Art von Entscheidungen spielen kognitive Kontrollprozesse, die der Umsetzung zielorientierten Verhaltens (Norman & Shallice, 2000) durch Konfliktlösung und -anpassung dienen. Als Bindeglied dieser beiden Prozesse gilt die Detektion von Entscheidungskonflikten, welche die vorherrschende Conflict Monitoring Theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) entsprechend dem modulorientiertem Ansatz einem speziellen neuronalen Modul zuordnet, das im anterioren cingulären Cortex lokalisiert ist (Botvinick, Cohen, & Carter, 2004). Die Probleme eines einseitigen modulorientierten Ansatzes verdeutlichen hier unter anderem die widersprüchliche Befundlage (z.B. Mansouri, Tanaka, & Buckley, 2009) und die letztlich weiterhin ungeklärte Frage nach den zugrundeliegenden Prozessen.
Die Arbeit hat deshalb zum Ziel, den modulorientierten Ansatz um einen komplementären Ansatz auf Basis der Theorie dynamischer Systeme (Dynamical Systems Theory, DST) zu ergänzen. Aus dem grundlegenden DST-Prinzip der kontinuierlichen (z.B. Spivey, 2007) Interaktion rückgekoppelter Komponenten (z.B. Kelso, 1995; Van Orden, Holden, & Turvey, 2003) wird zunächst die dynamische Hypothese abgeleitet, dass sich Effekte auf verschiedenen Zeitskalen gegenseitig bedingen und einander hervorbringen. Für Entscheidungen unter Konflikt bedeutet dies, dass sich die Prozesse der Konfliktlösung und anpassung durch ihre direkte Interaktion im kognitiven System gegenseitig erzeugen.
Zur Überprüfung dieser Hypothese werden innerhalb der Arbeit generelle empirische Strategien entwickelt, welche die Untersuchung von Entscheidungsprozessen auf verschiedenen Zeitskalen ermöglichen. Im empirischen Teil der Arbeit werden sodann zwei dieser Strategien zur Anwendung gebracht, um den Erkenntnisgewinn des dynamischen Ansatzes zu illustrieren. Zunächst wird in einer EEG-Studie eine Frequency-Tagging-Methode (z.B. Müller & Hübner, 2002; Müller, Andersen, & Keil, 2007) auf die Untersuchung der kognitiven Kontrollprozesse in einer Flanker-Aufgabe (Eriksen & Eriksen, 1974) adaptiert. Die neue Kombination einer kontinuierlichen neurophysiologischen Methode und eines klassischen Konflikt-Paradigmas ermöglicht die gleichzeitige Untersuchung kontinuierlicher Veränderungen der Aufmerksamkeit auf relevante und irrelevante Information. Die Ergebnisse der Studie stützen die Hypothese einer direkten Interaktion von Prozessen der Konfliktlösung und -anpassung und stellen bereits einen Widerspruch zur Conflict Monitoring Theory dar. Als weitere empirische Strategie wird in zwei Experimenten die Methode des Maus-Tracking (z.B. Buetti & Kerzel, 2009; Song & Nakayama, 2009; Spivey, Grosjean, & Knoblich, 2005) im Rahmen einer Simon-Aufgabe (Simon, 1969) eingesetzt. Die erneute Kombination einer kontinuierlichen Methode, diesmal auf Reaktionsebene, mit einem klassischen Konflikt-Paradigma erlaubt die Messung von Verhaltenstendenzen im Verlauf des gesamten Entscheidungsprozesses. Mit Hilfe einer neu entwickelten regressionsbasierten Analysemethode werden die Subprozesse einzelner Entscheidungen separiert und Einblicke in die Dynamik von Konfliktlösung und -anpassung gewonnen. Die Ergebnisse zeigen ein komplexes Muster zeitlicher Interaktion zwischen den beiden kognitiven Kontrollprozessen, wobei die Konfliktanpassung zeitlich unabhängig von der Verarbeitung irrelevanter Information ist. Dies steht erneut im Widerspruch zu Annahmen der Conflict Monitoring Theory.
Zusammenfassend stützen die empirischen Ergebnisse die dynamische Hypothese der kontinuierlichen Interaktion rückgekoppelter Komponenten und werden im nächsten Schritt in einem dynamisch-konnektionistischen Netzwerkmodell integriert. Als Alternative zum Modell der Conflict Monitoring Theory verzichtet es entsprechend dem dynamischen Ansatz auf ein Conflict Monitoring Modul (Botvinick et al., 2001). Es verfügt stattdessen über Verarbeitungs-Prozesse auf verschiedenen Zeitskalen (Kiebel, Daunizeau, & Friston, 2008) und eine Rückkopplung zwischen der Netzwerkschicht, die der Informationsverarbeitung dient, und jener, die der Zielrepräsentation dient (Gilbert & Shallice, 2002; Cohen & Huston, 1994). Die Ergebnisse der Simulation zeigen, dass das Modell sowohl die klassischen Befunde zur Konfliktlösung und anpassung (z.B. Gratton, Coles, & Donchin, 1992), als auch das in den empirischen Studien gefundene kontinuierliche Datenmuster von Entscheidungsprozessen reproduziert.
Die empirischen Befunde und die Ergebnisse der Modellierung bestätigen somit die postulierte dynamische Hypothese, dass sich Effekte auf verschiedenen Zeitskalen gegenseitig bedingen und einander hervorbringen. Dies verdeutlicht den komplementären Wert des dynamischen Ansatzes zum modulorientierten Ansatz, welcher vielfach in der Neuroökonomie verfolgt wird. Der hier entwickelte DST-basierte Ansatz bietet somit sowohl ein komplementäres Denkmodell, welches wie der modulorientierte Ansatz eine Verbindung zwischen den Phänomenen auf neuronaler und Verhaltensebene herstellt, als auch neue empirische Methoden zur dynamischen Erforschung von Entscheidungen. Daraus wird abschließend eine Fokuserweiterung für die zukünftige Forschung abgeleitet: zum einen auf die kontinuierlichen Prozesse, welche zu einer Entscheidung führen, und zum anderen auf die Interaktionsdynamik dieser Prozesse. Die Arbeit schließt mit dem Bild eines Entscheidungsprozesses als einer selbstorganisierten, metastabilen Balance (z.B. Kelso, 1995) bei der Lösung verschiedener Entscheidungsdilemmata (Goschke, 2003).
|
9 |
Making decisions under conflict with a continuous mind: from micro to macro time scalesScherbaum, Stefan 26 October 2010 (has links)
Making decisions is a dynamic process. Especially when we face a decision between conflicting options, different forces seem to drag our mind from one option to the other one (James, 1890), again and again. This process may last for a long time, sometimes only coming to a decision when we are finally forced to choose, e.g. by an important deadline.
Psychology and many other disciplines were interested in how humans make decisions from their beginnings on. Many different influences on decisions were discovered (e.g. Kahneman & Tversky, 1979; Todd & Gigerenzer, 2000). In the face of these advances, it seems odd, that knowledge about the ongoing process of reaching a decision is rare and much of the investigation has focused on the final outcome of choice situations (Townsend & Busemeyer, 1995). A very recent approach, called neuroeconomics, started out to investigate what happens behind the scenes of a final decision. Using modern neuroimaging methods, many neuroeconomists explain decision making in the brain in terms of a hierarchy of different neural modules that work together like a big corporation to finally make the best possible decision (Sanfey, Loewenstein, McClure, & Cohen, 2006). However, the focus on neural modules also limits this approach to a quite static view of decision making and many questions, related to the dynamic aspects of decision making, still remain open: How do we continuously control impulsive or habitual tendencies in our decisions when we pursue long-term goals? How do we shift attention back and forth between (goal) relevant properties of choice options? How do we adjust and readjust our focus of attention to relevant information in order to avoid distraction by irrelevant or misleading information? And how are we influenced by the environmental context when we make decisions?
The present work aims to show how an approach based on the concepts of dynamic systems theory could complement the module oriented approach and enhance our knowledge of the processes of decision making. Chapter 2 elaborates the limits of the module oriented approach, with a special focus on decisions under conflict, when we are faced with conflicting information, and introduces the principles of a complementary dynamic approach. Chapter 3 deduces the dynamic hypothesis of this work: ongoing processes interactions at different time scales can explain specific cognitive functions without postulating specialized modules for this function. To approach this hypothesis, chapter 4 will develop a theoretical and empirical framework to study decision making dynamically. The empirical part, building on the empirical framework, starts with chapter 5 presenting an EEG experiment. Chapter 6 presents two mouse tracking experiments, and chapter 7 presents a modelling study, reproducing the empirical data of chapters 5 and 6. The general discussion in chapter 8 summarizes the theoretical and empirical results and discusses possible limitations. Finally, chapter 9 discusses the implications of the dynamic approach to decision making, presents an outlook on future research projects, and closes the work by offering a dynamic picture of the processes behind the stage of a final decision.:Statement I
Brief Contents III
Contents V
Figures IX
Chapter 1 Introduction 1
Chapter 2 Decision making under conflict 3
Chapter 3 Investigating decision making under conflict dynamically 14
Chapter 4 Making decisions with a continuous mind 17
Chapter 5 The dynamics of cognitive control: evidence for within trial conflict adaptation from frequency tagged EEG 56
Chapter 6 How decisions evolve: the temporal dynamics of action selection 77
Chapter 7 Dynamic goal states: adapting cognitive control at different time scales without conflict monitoring 97
Chapter 8 General discussion 115
Chapter 9 Conclusion and outlook 123
References 130
Deutsche Zusammenfassung 153
Appendix I Supplementary material for chapter 5 159
Appendix II Model formulas for chapter 7 163 / „Man kann nicht beides haben: Den Rahm und die Butter.“ - „Wer die Wahl hat, hat die Qual.“ Mit diesen Sprichwörtern beklagt der Volksmund, womit das Leben uns immer wieder konfrontiert: wir müssen entscheiden, und oftmals führt uns das in Entscheidungskonflikte. Im Dilemma solcher Konflikte mag es begründet sein, dass das Thema der vorliegenden Arbeit, die Entscheidungsforschung, nicht nur in der Psychologie schon immer eine wichtige Rolle spielte, sondern auch in anderen Disziplinen, wie der Ökonomie, der angewandten Mathematik und der Philosophie. Die langjährigen Bestrebungen, diese unterschiedlichen Fachbereiche zu integrieren (z.B. Kahneman & Tversky, 1979; von Neumann & Morgenstern, 1944; Savage, 1972), münden aktuell in das Forschungsgebiet der Neuroökonomie (Camerer, Loewenstein, & Prelec, 2005; Loewenstein, Rick, & Cohen, 2008; Sanfey, Loewenstein, McClure, & Cohen, 2006). Neuroökonomen nutzen vielfach die Methoden der bildgebenden Hirnforschung, um durch die Lokalisierung der neuronalen Basis hierarchisch gegliederter Module Entscheidungsprozesse zu erklären (z.B. Sanfey et al., 2006; Fellows, 2004). Während die Anwendung bildgebender Methoden Potential birgt (z.B. Harrison, 2008), ist es vor allem der modulorientierte Ansatz, der das Risiko einer zu eingeschränkten Sichtweise auf Entscheidungsprozesse trägt (z.B. Ortmann, 2008; Oullier & Kelso, 2006).
Dies zeigt sich zum Beispiel im von der kognitiven Psychologie intensiv erforschten Bereich von Entscheidungen unter Konflikt. Eine zentrale Rolle bei dieser Art von Entscheidungen spielen kognitive Kontrollprozesse, die der Umsetzung zielorientierten Verhaltens (Norman & Shallice, 2000) durch Konfliktlösung und -anpassung dienen. Als Bindeglied dieser beiden Prozesse gilt die Detektion von Entscheidungskonflikten, welche die vorherrschende Conflict Monitoring Theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) entsprechend dem modulorientiertem Ansatz einem speziellen neuronalen Modul zuordnet, das im anterioren cingulären Cortex lokalisiert ist (Botvinick, Cohen, & Carter, 2004). Die Probleme eines einseitigen modulorientierten Ansatzes verdeutlichen hier unter anderem die widersprüchliche Befundlage (z.B. Mansouri, Tanaka, & Buckley, 2009) und die letztlich weiterhin ungeklärte Frage nach den zugrundeliegenden Prozessen.
Die Arbeit hat deshalb zum Ziel, den modulorientierten Ansatz um einen komplementären Ansatz auf Basis der Theorie dynamischer Systeme (Dynamical Systems Theory, DST) zu ergänzen. Aus dem grundlegenden DST-Prinzip der kontinuierlichen (z.B. Spivey, 2007) Interaktion rückgekoppelter Komponenten (z.B. Kelso, 1995; Van Orden, Holden, & Turvey, 2003) wird zunächst die dynamische Hypothese abgeleitet, dass sich Effekte auf verschiedenen Zeitskalen gegenseitig bedingen und einander hervorbringen. Für Entscheidungen unter Konflikt bedeutet dies, dass sich die Prozesse der Konfliktlösung und anpassung durch ihre direkte Interaktion im kognitiven System gegenseitig erzeugen.
Zur Überprüfung dieser Hypothese werden innerhalb der Arbeit generelle empirische Strategien entwickelt, welche die Untersuchung von Entscheidungsprozessen auf verschiedenen Zeitskalen ermöglichen. Im empirischen Teil der Arbeit werden sodann zwei dieser Strategien zur Anwendung gebracht, um den Erkenntnisgewinn des dynamischen Ansatzes zu illustrieren. Zunächst wird in einer EEG-Studie eine Frequency-Tagging-Methode (z.B. Müller & Hübner, 2002; Müller, Andersen, & Keil, 2007) auf die Untersuchung der kognitiven Kontrollprozesse in einer Flanker-Aufgabe (Eriksen & Eriksen, 1974) adaptiert. Die neue Kombination einer kontinuierlichen neurophysiologischen Methode und eines klassischen Konflikt-Paradigmas ermöglicht die gleichzeitige Untersuchung kontinuierlicher Veränderungen der Aufmerksamkeit auf relevante und irrelevante Information. Die Ergebnisse der Studie stützen die Hypothese einer direkten Interaktion von Prozessen der Konfliktlösung und -anpassung und stellen bereits einen Widerspruch zur Conflict Monitoring Theory dar. Als weitere empirische Strategie wird in zwei Experimenten die Methode des Maus-Tracking (z.B. Buetti & Kerzel, 2009; Song & Nakayama, 2009; Spivey, Grosjean, & Knoblich, 2005) im Rahmen einer Simon-Aufgabe (Simon, 1969) eingesetzt. Die erneute Kombination einer kontinuierlichen Methode, diesmal auf Reaktionsebene, mit einem klassischen Konflikt-Paradigma erlaubt die Messung von Verhaltenstendenzen im Verlauf des gesamten Entscheidungsprozesses. Mit Hilfe einer neu entwickelten regressionsbasierten Analysemethode werden die Subprozesse einzelner Entscheidungen separiert und Einblicke in die Dynamik von Konfliktlösung und -anpassung gewonnen. Die Ergebnisse zeigen ein komplexes Muster zeitlicher Interaktion zwischen den beiden kognitiven Kontrollprozessen, wobei die Konfliktanpassung zeitlich unabhängig von der Verarbeitung irrelevanter Information ist. Dies steht erneut im Widerspruch zu Annahmen der Conflict Monitoring Theory.
Zusammenfassend stützen die empirischen Ergebnisse die dynamische Hypothese der kontinuierlichen Interaktion rückgekoppelter Komponenten und werden im nächsten Schritt in einem dynamisch-konnektionistischen Netzwerkmodell integriert. Als Alternative zum Modell der Conflict Monitoring Theory verzichtet es entsprechend dem dynamischen Ansatz auf ein Conflict Monitoring Modul (Botvinick et al., 2001). Es verfügt stattdessen über Verarbeitungs-Prozesse auf verschiedenen Zeitskalen (Kiebel, Daunizeau, & Friston, 2008) und eine Rückkopplung zwischen der Netzwerkschicht, die der Informationsverarbeitung dient, und jener, die der Zielrepräsentation dient (Gilbert & Shallice, 2002; Cohen & Huston, 1994). Die Ergebnisse der Simulation zeigen, dass das Modell sowohl die klassischen Befunde zur Konfliktlösung und anpassung (z.B. Gratton, Coles, & Donchin, 1992), als auch das in den empirischen Studien gefundene kontinuierliche Datenmuster von Entscheidungsprozessen reproduziert.
Die empirischen Befunde und die Ergebnisse der Modellierung bestätigen somit die postulierte dynamische Hypothese, dass sich Effekte auf verschiedenen Zeitskalen gegenseitig bedingen und einander hervorbringen. Dies verdeutlicht den komplementären Wert des dynamischen Ansatzes zum modulorientierten Ansatz, welcher vielfach in der Neuroökonomie verfolgt wird. Der hier entwickelte DST-basierte Ansatz bietet somit sowohl ein komplementäres Denkmodell, welches wie der modulorientierte Ansatz eine Verbindung zwischen den Phänomenen auf neuronaler und Verhaltensebene herstellt, als auch neue empirische Methoden zur dynamischen Erforschung von Entscheidungen. Daraus wird abschließend eine Fokuserweiterung für die zukünftige Forschung abgeleitet: zum einen auf die kontinuierlichen Prozesse, welche zu einer Entscheidung führen, und zum anderen auf die Interaktionsdynamik dieser Prozesse. Die Arbeit schließt mit dem Bild eines Entscheidungsprozesses als einer selbstorganisierten, metastabilen Balance (z.B. Kelso, 1995) bei der Lösung verschiedener Entscheidungsdilemmata (Goschke, 2003).:Statement I
Brief Contents III
Contents V
Figures IX
Chapter 1 Introduction 1
Chapter 2 Decision making under conflict 3
Chapter 3 Investigating decision making under conflict dynamically 14
Chapter 4 Making decisions with a continuous mind 17
Chapter 5 The dynamics of cognitive control: evidence for within trial conflict adaptation from frequency tagged EEG 56
Chapter 6 How decisions evolve: the temporal dynamics of action selection 77
Chapter 7 Dynamic goal states: adapting cognitive control at different time scales without conflict monitoring 97
Chapter 8 General discussion 115
Chapter 9 Conclusion and outlook 123
References 130
Deutsche Zusammenfassung 153
Appendix I Supplementary material for chapter 5 159
Appendix II Model formulas for chapter 7 163
|
Page generated in 0.0854 seconds