Einleitung
Immer höhere Anforderungen an die Interdisziplinarität der virtuellen Produktentwicklung (VPE) erfordern qualifizierte Produktmodelle, die eine vollständige Integration und Verknüpfung aller relevanten Teilprozesse absichern. Gleichzeitig soll dabei für den Anwender das Produktverständnis, wie auch die Qualität des Produktes und des Prozesses erhöht werden. Eine Folge daraus sind kurze Innovationszyklen und eine Erhöhung der Transparenz des Prozesses. Die Anwendung numerischer Simulationsmethoden hat sich als dritter essentieller Bestandteil neben Konstruktion und Versuch in der VPE etabliert (Pährisch et al. 2012). Eine Absicherung durch virtuelle Prototypen in einer frühen Konzeptphase unterstützt dabei den Konstruktionsprozess. Ein Nachteil ist, dass die Verwendung virtueller Prototypen noch unzureichend in die übrigen Prozessschritte integriert und damit eine Sensibilisierung für eine vorausschauende Modellerzeugung noch nicht vorhanden ist. Ebenso ergab eine Studie, dass Berechnungsingenieure durchschnittlich 50% ihrer Arbeitszeit auf Datenbeschaffung verwenden müssen und nur jeweils 10% auf die Modellaufbereitung (Sendler et al. 2011). Dies liegt u. a. an der sog. Kommunikationsbarriere zwischen der Konstruktion und Simulation beschreibt. Eine Lösung dazu ist eine tiefergehende Integration dieser beiden Disziplinen in ein Produktmodell. Ein Lösungsansatz ist die Durchführung konstruktionsbegleitender Simulationen. Diese können mit in CAD-Systemen integrierten Simulationsmodulen durchgeführt werden. Die Integrationstiefe der gegebenen Verknüpfungen ist allerdings meist sehr gering.
Dieser Beitrag befasst sich mit Techniken, welche einen systematischen Aufbau eines simulationsorientierten Produktmodells absichern. Umgesetzt wird dies durch die Verwendung simulationsgerechter Komponenten, Feature und Analysen. Diese unterstützen eine automatisierte Modelltransformation im CAD-Prozess, an der Schnittstelle von Konstruktion und Simulation. Damit wird die Prozesskette Konstruktion-Simulation verkürzt. Ebenso werden auch durch die Integration tiefgehender Inferenzmechanismen fortgeschrittene Simulationstechniken, wie auch die Definition und Informationsübergabe von Rand- und Lastbedingungen und weiteren Details auf höherer Instanz ermöglicht.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-215085 |
Date | 10 December 2016 |
Creators | Andrae, René, Köhler, Peter |
Contributors | Universität Duisburg-Essen,, Technische Universität Dresden, Fakultät Maschinenwesen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:conferenceObject |
Format | application/pdf |
Source | Stelzer, Ralph, Hrsg., 2016. Entwerfen Entwickeln Erleben 2016 - Beiträge zur virtuellen Produktentwicklung und Konstruktionstechnik: Dresden, 30. Juni – 1. Juli 2016. Dresden: TUDpress - Verlag der Wissenschaften GmbH. S. 403-418. ISBN 978-3-95908-062-0 |
Page generated in 0.0027 seconds