<p>This report provides a comparison between the products cellular concrete, foam</p><p>concrete and LECA concrete. The questions to be answered during the work is how</p><p>the cellular concrete stands up in cost terms to the existing competitors on the market,</p><p>how the concrete products differ in design work, and in which situations the concrete</p><p>varieties are preferred to use.</p><p>Cellular concrete is a variant of ordinary concrete, with the difference that the ballast</p><p>is exchanged from stone materials to expanded polystyrene beads (EPS). This</p><p>substitution gives a product with higher insulation values but lower weight than</p><p>ordinary concrete.</p><p>The work was carried out by designing a survey which was sent to two hundred</p><p>randomly chosen companies across Sweden, to see the building industry’s opinion of</p><p>the product cellular concrete. The survey showed that cellular concrete was equals its</p><p>competitors in terms of price, while the product was said to be more flexible, quicker</p><p>and easier to cast.</p><p>Then some of the companies, who participated in the survey, were interviewed to see</p><p>more carefully, how the price, the workmanship and the time for casting and</p><p>dehydration differed between the products. Meanwhile, technical data were presented</p><p>for the products which formed the basis for the U-value calculation and the weight</p><p>analysis.</p><p>The result of this work was that LECA concrete is the cheapest option, when the Uvalue</p><p>is 0,40 W/(mK) and when the total thickness, including the following works, is</p><p>200 mm. Cellular concrete was found to be cheaper than foam concrete in small</p><p>quantities, in the both cases, since the foam concrete must be cast in multiple layers.</p><p>In addition, foam concrete requires more equipment, which results in a higher fixed</p><p>cost. Foam concrete becomes, however, more profitable the larger volumes that are</p><p>cast, because the fixed charges of the product are earned by the low volume cost.</p><p>Cellular concrete is suitable for smaller works, especially in tight spaces where some</p><p>insulation is required. Larger volumes are not beneficial because of the high volume</p><p>cost. Often, the weight may be decisive in the method and material selection. On these</p><p>occasions, the cellular concrete advantages through both low weight per unit volume</p><p>and good thermal insulation. To screed the cellular concrete has been shown to cause</p><p>large additional costs. At times, when no need to screed the concrete surface has</p><p>occurred, the total cost of the product almost halved. Cellular concrete should not be</p><p>cast in layers thinner than 50 mm.</p><p>LECA concrete must be cast in a layer of at least 100 – 120 mm that sufficient</p><p>adhesion can be obtained. This makes the product unsuitable for small castings,</p><p>including castings of the existing joists below 100 mm, but works well as foundations.</p><p>Of those described options, foam concrete is most suitable in larger castings.</p><p>However, it appears that the main use of foam concrete has been shown to be as a</p><p>filling material in road embankments.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:hj-12874 |
Date | January 2010 |
Creators | Hansson, Mattias, Åslew Andersson, Christian |
Publisher | Jönköping University, JTH, Civil Engineering, Jönköping University, JTH, Civil Engineering |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0022 seconds