Nous proposons une approche spectrale permettant d'aborder des problèmes d'interpolation à noyaux dont la résolution numérique n'est pas directement envisageable. Un tel cas de figure se produit en particulier lorsque le nombre de données est infini. Nous considérons dans un premier temps le cadre de l'interpolation optimale dans les sous-espaces hilbertiens. Pour un problème donné, un opérateur intégral est défini à partir du noyau sous-jacent et d'une paramétrisation de l'ensemble des données basée sur un espace mesuré. La décomposition spectrale de l'opérateur est utilisée afin d'obtenir une formule de représentation pour l'interpolateur optimal et son approximation est alors rendu possible par troncature du spectre. Le choix de la mesure induit une fonction d'importance sur l'ensemble des données qui se traduit, en cas d'approximation, par une plus ou moins grande précision dans le rendu des données. Nous montrons à titre d'exemple comment cette approche peut être utilisée afin de rendre compte de contraintes de type "conditions aux limites" dans les modèles d'interpolation à noyaux. Le problème du conditionnement des processus gaussiens est également étudié dans ce contexte. Nous abordons enfin dans la dernière partie de notre manuscrit la notion de noyaux conditionnellement positifs. Nous proposons la définition générale de noyaux symétriques conditionnellement positifs relatifs à une espace de référence donné et développons la théorie des sous-espaces semi-hilbertiens leur étant associés. Nous étudions finalement la théorie de l'interpolation optimale dans cette classe d'espaces.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00739683 |
Date | 12 July 2011 |
Creators | Gauthier, Bertrand |
Publisher | Ecole Nationale Supérieure des Mines de Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0025 seconds