Ces travaux portent sur l'étude de la complexité en requêtes de <br />problèmes symétriques, dans les cadres du calcul probabiliste classique <br />et du calcul quantique.<br /><br />Il est montré, dans le cas quantique, une application de la méthode de <br />bornes inférieures dite "polynomiale" au calcul de la complexité en <br />requêtes des problèmes de sous-groupes cachés abéliens, via la technique de "symétrisation".<br /><br />Dans le cas du calcul probabiliste, sous une hypothèse de "symétrie <br />transitive" des problèmes, il est donné une formule combinatoire <br />permettant de calculer la complexité en requêtes exacte du meilleur <br />algorithme non-adaptatif. De plus, il est mis en évidence que sous <br />certaines hypothèses de symétrie, ce meilleur algorithme non-adaptatif <br />est optimal même parmi les algorithmes probabilistes plus généraux, ce qui donne pour la classe de problèmes correspondante une expression exacte de la complexité en requêtes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00156762 |
Date | 11 May 2007 |
Creators | Nesme, Vincent |
Publisher | Ecole normale supérieure de lyon - ENS LYON |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds