Herzinsuffizienz ist ein klinisches Syndrom, welches durch funktionelle und strukturelle Anomalien des Herzens verursacht wird, und ist weltweit die häufigste Todesursache. Die dilatative Kardiomyopathie, welche durch eine Vergrößerung der linken Herzkammer definiert ist, und die arrhythmogene Kardiomyopathie, welche im Gegensatz durch eine Dysfunktion der rechten Herzkammer definiert ist, sind eine der häufigsten Ursachen für Herzinsuffizienz. Trotz vieler Bemühungen die molekularen Veränderungen der Herzinsuffizienz zu charakterisieren, sind Zelltypzusammensetzung, Genexpressionsänderungen, und zelluläre Interaktionen unter pathologischen Bedingungen unbekannt. Um diese Fragen zu adressieren wurde ein Protokoll zur Isolation intakter Zellkerne entwickelt um Einzelkernsequenzierung im Herzen durchzuführen. Anschließend wurde mit dem entwickelten Protokoll die zelluläre Zusammensetzung des erwachsenen gesunden menschlichen Herzens charakterisiert. Hier war mein Fokus die Charakterisierung und Identifikation von Subformen von Fibroblasten, und deren Genexpressionsunterschiede in den linken und rechten Vorhöfen und Herzkammern. Basierend auf dieser Annotation wurden die Zelltypen und Subtypen von ungefähr 900.000 Zellkernen von 61 nicht-ischämischen Herzinsuffizienzpatienten mit unterschliedlichen pathogenen Varianten in DCM- und ACM-assoziierten Genen oder idiopathischen Erkrankungen charakterisiert und mit 18 gesunden Spenderherzen verglichen. Dieser Datensatz zeigte spezifische Unterschiede des linken und rechten Ventrikels mit differenziell regulierten Genen und Signalwegen, and Veränderungen in der Zusammensetzung der verschiedenen Zelltypen und Subtypen. Um genotyp-spezifische Antworten unabhängig zu bestätigen wurden Algorithmen des maschinellen Lernens angewendet, welche die zugehörige Genotyp-Untergruppe des Patienten mit hoher Genauigkeit vorhersagten. Zusammenfassend stellen die in dieser Arbeit veröffentlichten Daten das vorherrschende Dogma in Frage, dass Herzinsuffizienz auf einen gemeinsamen finalen Signalweg zurückzuführen ist. / Heart failure is a clinical syndrom and leading cause of death worldwide, caused by functional and structural abnormalities of the heart. Dilated Cardiomyopathy, defined by a left ventricular enlargement, and arrhythmogenic cardiomyopathy, defined by a right ventricular dysfunction, are leading causes of heart failure. Despite previous efforts to characterise molecular changes in the failing heart, little is known on cell-type specific abundance and expression changes under pathological conditions, and how individual cell-types interact during heart failure and cardiac remodelling.
To address this question, a protocol for the isolation of intact nuclei was firstly established to perform robust single-nucleus RNA sequencing in the heart. Next, the cell-type composition of the healthy adult human heart was characterised. Here my focus was on the fibroblast nieche by characterising fibroblast states, their composition and their atria- and ventricle-specific expression patterns. Cell type and state annotation was then used to characterize the transcriptome of roughly 900,000 nuclei from 61 failing, non-ischemic human hearts with distinct pathogenic variants in DCM and ACM genes or idiopathic disease and compared those to 18 healthy donor hearts. This dataset revealed distinct responses of the right and left ventricle with differently regulated genes and pathways, and compositional changes across cell types and states. To independently confirm genotype-specific responses, machine learning approaches were applied, predicting genotype subgroups with high accuracy. Taken together, the findings published in this thesis upend the prevalent dogma that heart failure results in a final common pathway.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/27223 |
Date | 12 May 2023 |
Creators | Lindberg, Eric Lars-Helge |
Contributors | Prof. Dr. Landthaler, Markus, Prof. Dr. Hübner, Norbert, Prof. Dr. Lippert, Christoph |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0306 seconds