Return to search

Evaluation of a sprinkler cooling system on inhalable dust and ammonia concentrations in broiler chicken production

Indoor air contaminants such as dust and gases are present in concentrations that may be hazardous to worker health in poultry production. Poultry dust may contain inflammatory agents (e.g., endotoxin) and inhalation exposure has been associated with pulmonary symptoms. The current control practice to reduce worker exposure to poultry dust is the use of respiratory protection (e.g., filtering face-piece respirators). Limited research has been conducted to evaluate engineering controls to reduce dust concentrations in broiler chicken production. Therefore, the purpose of this research was to evaluate the effectiveness of a water sprinkling system to reduce inhalable dust and ammonia concentrations in a broiler chicken house.
Inhalable dust and ammonia concentrations were measured daily for the production cycle of a flock of broiler chickens (63 days). Inhalable dust was measured gravimetrically using an inhalable sampler and ammonia was measured by a direct reading sensor. Sampling was performed on a stationary mannequin inside two broiler chicken houses. One house used a sprinkler cooling system to deliver a water mist throughout the house and the second house was an untreated control. The sprinkler system activated 5 days after chicken placement and continued through day 63 of the broiler chicken production cycle. The following sprinkler activation program was used each hour from 6am to 10pm: days 5 – 9 five seconds, days 10 – 14 ten seconds, and days 15-63 for fifteen seconds.
Geometric mean (GM) inhalable dust concentrations collected in the treatment house (5.2 mg/m3) were lower than those found in the control house (6.0 mg/m3). The GM ammonia concentration within the treatment house was higher at 10.6 ppm (GSD: 1.80), compared to the control house (GM 9.51 ppm; GSD: 1.77). However, the observed differences were not statistically significant (p = 0.33 and p = 0.34, respectively).
Concentrations of inhalable dust were reduced by 11β when using the water sprinkling system, however the reduction was not statistically significant. The observed reduction in dust concentration was not sufficient to eliminate the need for respiratory protection.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6560
Date01 May 2016
CreatorsWilliams Ischer, Sarah Ashlee
ContributorsNonnenmann, Matthew W.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2016 Sarah Ashlee Williams Ischer

Page generated in 0.0024 seconds