One of the major problems encountered in wireless location is the effect caused by non-line of sight (NLOS) propagation. When the direct path from the mobile station (MS) to base stations (BSs) is blocked by obstacles or buildings, the signal arrival times will delay. That will make the signal measurements include an error due to the excess path propagation. If we use the NLOS signal measurements for localization, that will make the system localization performance reduce greatly. In the thesis, a time-of-arrival (TOA) based location system with NLOS mitigation algorithm is proposed. The proposed method uses least squares-support vector machine (LS-SVM) with optimal parameters selection by particle swarm optimization (PSO) for establishing regression model, which is used in the estimation of propagation distances and reduction of the NLOS propagation errors. By using a weighted objective function, the estimation results of the distances are combined with suitable weight factors, which are derived from the differences between the estimated measurements and the measured measurements. By applying the optimality of the weighted objection function, the method is capable of mitigating the NLOS effects and reducing the propagation range errors. Computer simulation results in ultra-wideband (UWB) environments show that the proposed NLOS mitigation algorithm can reduce the mean and variance of the NLOS measurements efficiently. The proposed method outperforms other methods in improving localization accuracy under different NLOS conditions.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0729108-145929 |
Date | 29 July 2008 |
Creators | Lin, Chien-hung |
Contributors | Jiann-Der Lee, Chin-Der Wann, Shiunn-Jang Chern, Hsin-Hsyong Yang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0729108-145929 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0021 seconds