Ce travail de recherche porte sur la modélisation mathématique des principaux procédés sidérurgiques en suivant une approche systémique. L’objectif est d’élaborer un outil de modélisation de l’ensemble de la filière destiné à l’optimiser du point de vue énergétique et environnemental. Nous avons développé des modèles physico-chimiques du haut fourneau, de la cokerie, de l’agglomération et du convertisseur. Ces modèles ont ensuite été reliés entre eux sous forme d’un diagramme de flux unique en utilisant le logiciel ASPEN Plus. Dans une première partie, nous nous sommes particulièrement intéressés au haut fourneau à recyclage, une variante innovante du haut fourneau dans laquelle les gaz de gueulard sont recyclés et réinjectés aux tuyères après capture du CO2. Nous avons testé une réinjection à un niveau (aux tuyères) et à deux niveaux (tuyères et ventre). Les résultats ont été comparés avec succès à des données expérimentales issues d’un réacteur pilote et montrent que le recyclage permet une baisse de plus de 20 % des émissions de CO2 du haut fourneau. Le recyclage à deux niveaux ne semble pas plus performant que celui à un seul niveau. Dans un deuxième temps, nous avons simulé le fonctionnement d’une usine sidérurgique intégrée dans son ensemble. Différentes configurations ont été testées, pour un haut fourneau classique ou un haut fourneau à recyclage, en considérant un éventuel recyclage du laitier de convertisseur à l’agglomération, et en étudiant l’influence de la teneur en silicium de la fonte sur toute la filière. On montre notamment qu’il est possible de réduire le prix de revient de la tonne d’acier en substituant et recyclant différents sous-produits / This research study deals with mathematical modeling of the main steelmaking processes following a systems approach. The objective was to build a modeling tool of the whole steelmaking route devoted to its energetic and environmental optimization. We developed physical-chemical models for the blast furnace, the coke oven, the sintering plant and the basic oxygen furnace. These models were then linked together in a single flow sheet using the ASPEN Plus software. First, we focused on the top gas recycling blast furnace, a novel variant of the blast furnace in which the top gas is recycled and re-injected into the tuyeres after CO2 removal and capture. We tested both a reinjection at one level (tuyeres only) and at two levels (tuyeres and shaft). The results were successfully compared with experimental data from a pilot reactor and demonstrate that recycling can lower the blast furnace CO2 emissions by more than 20%. Recycling at two levels does not seem more efficient than at a single level. Second, we simulated the operation of an entire integrated steelmaking plant. Different configurations were tested, using a conventional blast furnace or a top gas recycling blast furnace, considering a possible recycling of the converter slag to the sintering plant, and studying the influence of Si content in the hot metal on the entire steelmaking plant operation. We show that it is possible to reduce the cost of producing steel by substituting and recycling various by-products
Identifer | oai:union.ndltd.org:theses.fr/2014LORR0268 |
Date | 19 December 2014 |
Creators | Afanga, Khalid |
Contributors | Université de Lorraine, Patisson, Fabrice, Mirgaux, Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds