Diversas atividades humanas são fortemente dependentes do clima e da sua variabilidade, especialmente aquelas relacionadas ao uso da água. A operação integrada de reservatórios com múltiplos usos requer uma série de decisões que definem quanta água deve ser alocada, ao longo do tempo para cada um dos usos, e quais os volumes dos reservatórios a serem mantidos. O conhecimento antecipado das condições climáticas resulta de vital importância para os operadores de reservatórios, pois o insumo dos reservatórios é a vazão dos rios, que por sua vez é dependente de condições atmosféricas e hidrológicas em diferentes escalas de tempo e espaço. A pesquisa trata sobre três importantes elementos de subsídio à tomada de decisão na operação de reservatórios baseada na previsão de variáveis hidrológicas: (a) as previsões de vazão de curto prazo; (b) as previsões de precipitação de longo prazo e (c) as medidas de desempenho das previsões. O reservatório de Furnas, localizado na bacia do Rio Grande, em Minas Gerais, foi selecionado como estudo de caso devido, principalmente, à disponibilidade de previsões quantitativas de chuva e pela importância desse reservatório na região analisada. A previsão de curto prazo de vazão com base na precipitação foi estimada com um modelo empírico (rede neural artificial) e a previsão de precipitação foi obtida pelo modelo regional ETA. Uma metodologia de treinamento e validação da rede neural artificial foi desenvolvida utilizando previsões perfeitas de chuva (considerando a chuva observada como previsão) e utilizando o maior número de dados disponíveis, favorecendo a representatividade dos resultados obtidos. A metodologia empírica alcançou os desempenhos obtidos com um modelo hidrológico conceitual, mostrando-se menos sensitiva aos erros na previsão quantitativa de precipitação nessa bacia. Os resultados obtidos mostraram que as previsões de vazão utilizando modelos empíricos e conceituais e incorporando previsões quantitativas de precipitação são melhores que a metodologia utilizada pelo ONS no local de estudo. A redução dos erros de previsão relativos à metodologia empregada pelo ONS foi em torno de 20% quando usadas previsões quantitativas de precipitação definidas pelo modelo regional ETA e superiores a 50% quando usadas previsões perfeitas de precipitação. Embora essas últimas previsões nunca possam ser obtidas na prática, os resultados sugerem o quanto o incremento do desempenho das previsões quantitativas de chuva melhoraria as previsões de vazão. A previsão de precipitação de longo prazo para a bacia analisada foi também estimada com um modelo empírico de redes neurais artificiais e utilizando índices climáticos como variáveis de entrada. Nesse sentido, foram estimadas previsões de precipitação acumulada no período mais chuvoso (DJF) utilizando índices climáticos associados a fenômenos climáticos, como o El Niño - Oscilação Sul e a Oscilação Decadal do Pacífico, e a modos de variabilidade climática, como a Oscilação do Atlântico Norte e o Modo Anular do Hemisfério Sul. Apesar das redes neurais artificiais terem sido aplicadas em diversos problemas relacionados a hidrometeorologia, a aplicação dessas técnicas na previsão de precipitação de longo prazo é ainda rara. Os resultados obtidos nesse trabalho mostraram que consideráveis reduções dos erros da previsão relativos ao uso apenas da média climatológica como previsão podem ser obtidos com a metodologia utilizada. Foram obtidas reduções dos erros de, no mínimo 50%, e chegando até um valor próximo a 75% nos diferentes testes efetuados no estudo de caso. Uma medida de desempenho da previsão foi desenvolvida baseada no uso de tabelas de contingência e levando em conta a utilidade da previsão. Essa medida de desempenho foi calculada com base nos resultados do uso das previsões por um modelo de operação de reservatório, e não apenas na comparação de vazões previstas e observadas. Nos testes realizados durante essa pesquisa, ficou evidente que não existe uma relação unívoca entre qualidade das previsões e utilidade das previsões. No entanto, em função de comportamentos particulares das previsões, tendências foram encontradas, como por exemplo nos modelos cuja previsão apresenta apenas defasagem. Nesses modelos, a utilidade das previsões tende a crescer na medida que a qualidade das mesmas aumenta. Por fim, uma das grandes virtudes da medida de desempenho desenvolvida nesse trabalho foi sua capacidade de distinguir o desempenho de modelos que apresentaram a mesma qualidade. / Several human activities are strongly dependent on climate and its variability, especially those related to water use. The operation of multi-purpose reservoirs systems defines how much water should be allocated and the reservoir storage volumes to be maintained, over time. Knowing in advance the weather conditions helps the decision making process, as the major inputs to reservoirs are the streamflows, which are dependent on atmospheric and hydrological conditions at different time-space scales. This research deals with three important aspects towards the decision making process of multi-purpose reservoir operation based on forecast of hydrological variables: (a) short-term streamflow forecast, (b) long-range precipitation forecast and (c) performance measures. The Furnas reservoir on the Rio Grande basin was selected as the case study, primarily because of the availability of quantitative precipitation forecasts from the Brazilian Center for Weather Prediction and Climate Studies and due to its importance in the Brazilian hydropower generation system. Short-term streamflow forecasts were estimated by an empirical model (artificial neural network – ANN) and incorporating forecast of rainfall. Quantitative precipitation forecasts (QPFs), defined by the ETA regional model, were used as inputs to the ANN models. A methodology for training and validating the ANN models was developed using perfect precipitation forecasts (i.e., using the observed precipitation as if it was a forecast) and considering the largest number of available samples, in order to increase the representativeness of the results. The empirical methodology achieved the performance obtained with a conceptual hydrological model and seemed to be less sensitive to precipitation forecast error relative to the conceptual hydrological model. Although limited to one reservoir, the results obtained show that streamflow forecasting using empirical and conceptual models and incorporating QPFs performs better than the methodology used by ONS. Reduction in the forecast errors relative to the ONS method was about 20% when using QPFs provided by ETA model, and greater than 50% when using the perfect precipitation forecast. Although the latter can never be achieved in practice, these results suggest that improving QPFs would lead to better forecasts of reservoir inflows. Long-range precipitation forecast was also estimated by an empirical model based on artificial neural networks and using climate indices as input variables. The output variable is the summer (DJF) precipitation over the Furnas watershed. It was estimated using climate indices related to climatic phenomena such as El Niño - Southern Oscillation and the Pacific Decadal Oscillation and modes of climate variability, such as the North Atlantic Oscillation and the Southern Annular Mode. Despite of ANN has been applied in several problems of hydrometeorological areas, the application of such technique for long-range precipitation forecast is still rare. The results obtained demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices. Reductions in the forecast errors achieved by using only the climatological mean as forecast were considerable, being at least of 50% and reaching values close to 75% in several tests. A performance measure based on the use of contingency tables was developed taking into account the utility of the forecast. This performance measure was calculated based on the results of the use of the forecasts by a reservoir operation model, and not only by comparing streamflow observed and forecast. The performed tests show that there is no unequivocal relationship between quality and utility of the forecasts. However, when the forecast has a particular behavior, trends were found in the relationship between utility and quality of the forecast, such as models that generate streamflow forecast with lags in comparison to the observed values. In these models, the utility of the forecasts tends to enhance as the quality increases. Finally, the ability to distinguish the performance of forecast models having similar quality was one of the main merits of the performance measure developed in this research.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/26916 |
Date | January 2010 |
Creators | Bravo, Juan Martín |
Contributors | Collischonn, Walter, Tucci, Carlos Eduardo Morelli |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0085 seconds