轉折型時間序列在現實生活中常常可見,例如因戰爭、政策改變、罷工或自然界的條件劇變等,而使時間序列的走勢發生明顯的轉變。傳統上,對這種轉折型時間序列資料進行轉折點的偵測時,大部分均從事後的觀點,主觀上先行認定結構轉變發生的時點,而後再以檢定加以確認。但此種方法過於主觀,而且轉型並非一蹴可幾,若以單一的轉折點來解釋轉型的現象,似乎不太恰當。
有鑑於此,本文利用模糊轉折區間統計認定法,以事前的觀點,對具有平均數或變異數改變的轉折型時間序列進行轉折區間的認定。並以匯率及貿易餘額的實際例子,利用我們所提出的方法進行單變數及雙變數的模糊分類,進而求出個別及聯合的轉折區間。 / Structure-changing time series are often seen in daily life. For example, war, change of policy, labor strike, or change of natural phenomena result in obvious change of time series. Most of detection of change points for structure-changing time series take place afterwards. In this paper, we pre-sent a change periods detection method for trend time series using the concept of fuzzy logic. Empirical example about exchange rate and balance of international trade is illustrated with detailed analysis.
Identifer | oai:union.ndltd.org:CHENGCHI/B2002002783 |
Creators | 程友梅, Cheng, Yu Mei |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0022 seconds