1 |
轉折型時間序列的認定 / Pattern Recognition for Trend Time Series程友梅, Cheng, Yu Mei Unknown Date (has links)
轉折型時間序列在現實生活中常常可見,例如因戰爭、政策改變、罷工或自然界的條件劇變等,而使時間序列的走勢發生明顯的轉變。傳統上,對這種轉折型時間序列資料進行轉折點的偵測時,大部分均從事後的觀點,主觀上先行認定結構轉變發生的時點,而後再以檢定加以確認。但此種方法過於主觀,而且轉型並非一蹴可幾,若以單一的轉折點來解釋轉型的現象,似乎不太恰當。
有鑑於此,本文利用模糊轉折區間統計認定法,以事前的觀點,對具有平均數或變異數改變的轉折型時間序列進行轉折區間的認定。並以匯率及貿易餘額的實際例子,利用我們所提出的方法進行單變數及雙變數的模糊分類,進而求出個別及聯合的轉折區間。 / Structure-changing time series are often seen in daily life. For example, war, change of policy, labor strike, or change of natural phenomena result in obvious change of time series. Most of detection of change points for structure-changing time series take place afterwards. In this paper, we pre-sent a change periods detection method for trend time series using the concept of fuzzy logic. Empirical example about exchange rate and balance of international trade is illustrated with detailed analysis.
|
2 |
模糊時間數列轉折區間的認定 / Application of Fuzzy Time Series Analysis To Change Periods Detection莊閔傑 Unknown Date (has links)
由於許多經濟指標的定義不明確,或是因為資料蒐集的時間不一,導致代表經濟景氣的數值,實際上即具有相當大的的不確定性。傳統的方法多不考慮這樣的模糊性,而傾向尋找一準確的模式轉折點。本文則以模糊數學的方法,運用模糊分類法以及模糊熵,訂定一個評判的準則。藉以找出一時間數列模式發生變化的轉折區間。最後以台灣經濟景氣指標為例,說明此方法可不需對資料的模式有任何事先的認知,即可得出與傳統方法相近,甚至更為合理的預測結果。 / Unlike conventional change points detecting, which seeks to find a decision boundary between classes for certain structural changed time series, the purpose of this research is to investigate a new approach about fuzzy change period identification. Based on the concept of fuzzy theory, we propose a procedure for the - level of fuzzy change period detecting and prove some useful properties for a fuzzy time series. We use some numerical examples to demonstrate how these procedures can be applied. Finally, experimental results show that the proposed detecting approach for structure change of fuzzy time series is available and practical in identifying the alpha-level of fuzzy change period.
|
Page generated in 0.0514 seconds