The theoretical study of nonlinear expectations is the focus of attention for applications in a variety of different fields — often with the objective to model systems under incomplete information. Especially in mathematical finance, advances in the theory of sublinear expectations (also referred to as coherent risk measures) lay the theoretical foundation for modern approaches to evaluations under the presence of Knightian uncertainty. In this book, we introduce and study a large class of jump-type processes for sublinear expectations, which can be interpreted as Lévy-type processes under uncertainty in their characteristics. Moreover, we establish an existence and uniqueness theory for related nonlinear, nonlocal Hamilton-Jacobi-Bellman equations with non-dominated jump terms.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-211795 |
Date | 17 October 2016 |
Creators | Hollender, Julian |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. René L. Schilling, Prof. Dr. René L. Schilling, Prof. Dr. Jiang-Lun Wu |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0027 seconds